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Visuals Matter
Slides, Videos, Posters, Demos 
Papers 

- Diagrams 
- Graphs 
- Even fonts and formatting! 

You want your work to look: 
- Professional 
- Attractive 
- Memorable 
- Informative
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Let’s go back in time…

Tim Wood’s Thesis Defense

Sometime in April, 2011
Somewhere in farm country, Massachusetts
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Data Centers
• Infrastructure as a Service clouds  

rent server and storage resources on demand

• Data Centers are BIG server farms
• Clusters of 10,000s of servers
• Growing to 100s of thousands

• Host many application types
• Web servers, databases
• Custom business apps
• Search clusters, data mining

Challenges: large scale and 
dynamic workload fluctuations
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Server Virtualization
• Data centers use virtualization to share physical 

resources and simplify automation

• Allows a server to be “sliced”  
into Virtual Machines

• VM has own OS/applications
• Rapidly adjust resource allocations
• VM migration within a LAN

Hypervisor

Linux

VM 2

Windows

VM 1

Windows Linux
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• How to transition applications to VMs and account for 
virtualization overheads?
• MOVE: Modeling Overheads of Virtual Environments

• Where should VMs be placed to allow for the greatest level of 
server consolidation?
• Memory Buddies: Memory sharing guided placement

• How to dynamically allocate VM resources to prevent server 
overload?
• Sandpiper: Automated VM migration and resizing
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Within a Data Center

Deployment Resource Management Reliability

MOVE Memory 
Buddies Sandpiper CloudNet Pipe 

Cloud
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Sandpiper

Memory Buddies
Within a Data Center
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What is good in these slides?
(or bad!) 
(your ideas here) 
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What is good in these slides?
Good balance of text and visuals 
Nice high level overview of thesis 
Good connections between components of thesis 

Animation is a bit excessive
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Slide Tips
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Limit your text (84 point)

Use large fonts (41 point) 
- Not smaller than this (32 point) 

Use bullets, not paragraphs 
- Emphasize your key points 

Don’t try to be exhaustive 
- Unless the slides will be referred to later without your speech 

Don’t try to cram in too much content!
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Limit your text (ugly version)

Use large fonts 
- Not smaller than this (32 point) 

Use bullets, not paragraphs 
- Emphasize your key points 

Don’t try to be exhaustive 
- Unless the slides will be referred to later without your speech 

Don’t try to cram in too much content!
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Mix Text and Images
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USE A HIERARCHY

• This is text

• This is also text

• This is even more text

• Why are they all the same size?
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Use a hierarchy
This is text 

- This is also text 
- This is even more text 

- Note that they are not the same size! 

White space is important, but don't go overboard 
- And sub bullets with a smaller font size help viewers focus on 

key points 

Make your own template 
and keep improving it!
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This is where I put my content
Here is more content

Wow, this is just awful.
Why is the bar so big at the bottom?

I have so little useful space and it is poorly laid out.

GW PPT Template
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My Template
Text that is reasonably large 

- Sub bullets that are smaller 
- Sub-sub bullets that are even smaller, although I rarely use them 
- (Mainly so I can add spacing more flexibly) 

Large “before paragraph” spacing so bullets aren’t 
too tight and smaller line spacing so you can fit 
denser text when needed (try to avoid multi-line) 
A useful footer with your name and affiliation 

- Always include the slide number in corner! 

Minimal background images 
Optional: school / lab logos

18

Pop up boxes to emphasize 
key points!
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Should we animate?
Text that is reasonably large 

- Sub bullets that are smaller 
- Sub-sub bullets that are even smaller, although I rarely use them 
- (Mainly so I can add spacing more flexibly) 

Large “before paragraph” spacing so bullets aren’t 
too tight and smaller line spacing so you can fit 
denser text when needed (try to avoid multi-line) 
A useful footer with your name and affiliation 

- Always include the slide number in corner! 

Minimal background images 
Optional: school / lab logos

19

It depends! Usually only if 
~3 bullets on slide
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Animations
Useful, but “expensive” to create 

Can be distracting if  
overused 

Suggestion: only use animation for emphasizing 
most important points 

- And you only have at most 3 of those, right?
20
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Color Inspiration

21

From Boxes and Arrows
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Color
Related colors 

Complementary colors

22

Limit	the	number		
of	colors	

Max	per	display:	4	

Max	across	en9re	
app:	7
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Font/Background Color
White background with a black font is easier to read 

Black background with white font can look childish 

Other colors may not have enough contrast or could 
look strange depending on the projector

23
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Font/Background Color
White background with a black font is easier to read 

Black background with white font can look childish 

Other colors may not have enough contrast or could 
look strange depending on the projector
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Font/Background Color
White background with a black font is easier to read 

Black background with white font can look childish 

Other colors may not have enough contrast or could 
look strange depending on the projector

25



Tim Wood - The George Washington University - Department of Computer Science

Fonts
Know the difference between: 
Serif fonts: easier to read in print 

- Times New Roman 

Sans-Serif fonts: more modern on screen 
- Arial, Helvetica 

Monospaced fonts: only for code 
- Courier

Never use Comic Sans!

26
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Ted Talk style?
Should we mimic TED talk slide style?

27



PREPARING TO FAIL

Photo: Blair Harkness



INFRASTRUCTURE

CODE

PEOPLE



INFRASTRUCTURE

WINSTON CHURCHILL

“Success is stumbling from failure to failure 
with no loss of enthusiasm.”



REDUNDANCY



MULTIPLE HARD DRIVES
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TED Slide Style
Don’t use this for a technical talk 
TED is great inspiration for speaking style 

- but the slide format is mainly relevant for “motivational” talks 

Similarly, much of the advice for making great slides 
online is not relevant! 

- They are for a business audience!

34
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How many slides?
I typically aim for ~1 minute per slide 

Varies depending on the depth of information per 
slide and whether you use “real” animation or multi-
slide animation

35
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Know your audience!
Slide format will be very different… 
Classroom tutorial 

- lots of text, slides need to be able to stand on their own 

Talk at CS conference 
- Precise, technical material. Mix of text and visuals 

Pitching a startup or product 
- Focus on excitement and innovation, advertising not science 

Talk at Department of Defense 
- They love text heavy slides for some reason…  

Each company / org will have its own “culture"

36

P != NP



Tim Wood - The George Washington University - Department of Computer Science

P != NP
Blah blah 

I proved it using the X 
conjecture 
Blah blah 

37



Diagrams and Graphs 
Tips
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Diagrams
Visual representations of your algorithm, system, or 
approach are always helpful 

- Make the paper easier to understand 
- Break up large chunks of text 

Find a tool that works for you 
- My lab used Omnigraffle (mac only), switching to diagrams.net 
- Use something consistently so you become more efficient

39
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Figure 3: On the left side is the local failover of NF Instance. Upon NF1 failure in Node-1, NF Manager initiates failover seam-
lessly to local replica NF1’. The right side represents the remote failover of NF chain (NF3, NF4, NF5) to the remote standby
node. Upon failure of Primary (Node-2), the predecessor nodes (Node-1) initiates failover by replaying the packets from its
logged bu�er and also redirects the subsequent packets to the standby node.

loss of connectivity) when the backup is on another node, as shown
at right in Figure 3.
Standby server: The NF Orchestrator designates a standby node and
noti�es the NF Managers at both the node with the active NFs of
the chain (Primary) and the predecessor node serving the NF chain.
The node with the Active NFs and the predecessor node monitor the
liveness status using BFD (more detail in §3.4). If an alternate route
to the primary server exists after a link failure (i.e., an alternate
output port has been con�gured by SDN controller), the predeces-
sor node simply redirects the tra�c. If a link or node failure makes
the primary unreachable, the predecessor node initiates the replay
mode on the designated standby/backup node.
Chain-wide state checkpointing: REINFORCE relies on �ve key con-
cepts, i.e., i) Packet logging with timestamps, ii) Latch bu�ers for
external synchrony, iii) Pipelined replication, iv) Atomic state up-
dates and v) Replay-based recovery to assure consistent and e�-
cient failure resiliency of chains replicated to a secondary host. We
describe these now.
(1) Packet loggingwith logical time stamping: In REINFORCE,
all the incoming packets at the predecessor node are appended with
a logical timestamp (e.g., simple 64 bit packet counter)3. And all
the outgoing packets are logged (bu�ered) in per-port rotating log
bu�ers at each of the NFV nodes (predecessors).
The input packet log at the predecessor node is used to replay
packets to the standby node when an active node fails. At the
active NFV node, the timestamped value of each packet is used to
track the packet processing progress for a �ow. This information is
maintained in a Transmit Timestamp (TxTs) table replicated across
the primary and backup nodes. The input logger �ushes bu�ered
packets upon noti�cation by the active node’s NF Manager that
they have been successfully sent out.
(2) Transmit latch bu�ers: Bu�ering packets are needed to pro-
vide external synchrony in the face of failure, but excessive bu�er-
ing increases latency. Packets are stored in a latch bu�er at the
end of the service chain on the primary server. If all packets pro-
cessed within a batch are deterministic (which is often the case),

3A single nondecreasing counter is su�cient on the Logger; this, in turn, gives
monotonic per-�ow counters when packets are demultiplexed on the primary node

then they can be released more quickly since the standby must
only update its TxTs table in order to know which packets must
be replayed in the event of a failure. Once a TxTs table ‘commit’
acknowledgment arrives from the standby’s RSync component indi-
cating the timestamps for deterministic packet batches are recorded,
packets are released to downstream external nodes. On the other
hand, replay is unsafe for packets with non-determinism, so REIN-
FORCE proactively pushes checkpoints for any batch that contains
non-determinism as described next.
(3) Pipelined replication: Our remote replication scheme sim-
pli�es consistency and improves performance by leveraging the
local checkpoints that we already provide for software failures on
the primary host. The local replicas have their state updated at the
end of each batch of packets, as described in Section 3.2, which
gives a consistent version of the state that can be copied to the
remote server without any need to pause the primary replica. As
discussed previously, an important feature is that REINFORCE dif-
ferentiates between deterministic and non-deterministic updates
to either NF state or packet data. Deterministic updates can be
recovered via replay on the remote host, so state checkpoints can
be replicated in a lazy fashion to reduce overhead. On the other
hand, non-deterministic state updates cannot be replayed, so packet
batches with non-determinism need to have a checkpoint replicated
to the backup before they are released from the primary. Fortu-
nately, this replication can be parallelized in two ways. First, it can
be performed concurrently with subsequent packet processing in
the remainder of the chain. Second, as shown previously in Fig-
ure 1(c), an NF can continue to speculatively execute deterministic
batches of packets while a checkpoint completes, only stalling its
processing if a second non-deterministic batch occurs. To main-
tain packet ordering, deterministic packets that are processed after
the non-deterministic packets are also not released until the non-
deterministic packets are released. This gives the ability to continue
making progress subsequent to a non-deterministic packet as long
as no other non-deterministic packet processing occurs before state
corresponding to the �rst non-deterministic packet processing is
complete. Otherwise, we have to stall packet processing to ensure
correct recovery of the state at the remote replica in the event of fail-
ures while the state is being checkpointed and copied to the replica.
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Bad Diagrams
Is this a good system diagram?
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capacity is close to desired utilization without taking under 
consideration their cost. However, in practice as the results 
that follow in Section VI will exhibit, the total cost is also 
reduced.  

The number of variables and constraints in the above 
ILP formulation depend on the number D of instance types 
that can be used and the number M of running instances in 
S. In the worst case, all the D available instance types are 
candidates to replace a running instance’s type. 
Additionally, the number of candidate instance types can be 
reduced if the user sets region and operating constraints 
(non included in TABLE II. ).For example, the user can set 
constrains in order to change a running instance with 
another instance of the same machine type, of the same 
operation system or running in the same region (TABLE I. 
). Using these constraints the number of available choices 
for the algorithm is reduced significantly, along with the 
time required to acquire the optimal solution. For that 
reason the proposed mechanisms include a pre-processing 
phase, in order to select the type of instances that can be 
used by the ILP algorithm and pass them as input to the ILP. 
In case there are no such constraints, the pre-processing 
phase can be omitted.  
 

V. SMART CLOUD MONITORING – SUMO 
In this section we present SuMo – Smart Cloud Monitoring 
toolkit, which contains the necessary mechanisms for 
collecting monitoring data from Amazon Web Services 
(AWS) and analyzing them. SuMo includes the proposed 
ILP algorithm, while other techniques presented previously 
on previous works (e.g., [16]) will also be incorporated. 
SuMo makes easy for anyone, a researcher or an 
administrator, to monitor the owned instances, run the 
proposed mechanisms or implement new more intelligent 
ones. SuMo is open-source and available through github 
[31]. To the best of our knowledge SuMo is the only open-
source cloud monitoring toolkit for public clouds and in 
particular AWS. 

SuMo is written in Python; utilizing the boto framework 
[26] for communicating with AWS. It also uses the SciPy 
[27] and NumPy [28] libraries for scientific computations. 
For the ILP technique SuMo interfaces with IBM ILOG 
CPLEX Optimizer [29], which is free for non-commercial 
purposes, interfacing with other (more open) ILP solvers is 
also under way. 

SuMo is composed of four main components/modules 
(Figure 1): cloudData, simCloudData, cloudKeeping and 
cloudForce.  

 
Figure 1 SuMo – Smart cloud Monitoring 

The clouData module contains all the necessary methods 
for retrieving a user’s current running instances, for getting 
the price of an instance type and its exact characteristics 
(e.g., EC2 Compute Units - ECU). Interestingly, AWS do 
not provide directly, through an API, instance pricing and 
information on the instance characteristics. Instead, for 
pricing information one has to retrieve and analyze the 
JSON files used by the AWS web site that contain the 
relative information [30]. For the instances’ characteristics, 
SuMo provides static JSON files with the necessary 
information. The cloudData module also contains methods 
that return, through the boto API (and indirectly through 
CloudWatch, see Section III and [20]) information 
regarding the CPU, the disk and the network utilization of a 
particular instance, for a given time period and particular 
time slot. The returned utilization information is in the form 
of a signal, such as the one in Eq. (1), presented earlier in 
the ILP algorithm (Section IV). Some of the most important 
functions of cloudData module are the following: 

x get_instances: returns a list of all running instances   
x get_aws_statistics: returns statistics for the metrics listed 

in Section III for a particular time period  
x get_instances_workload: computes per instance 

workload based on their ECU capacity and CPU usage 
x get_instances_cost: computes per instance cost based on 

their prices [30] and running times 

However, since it is not always possible for a researcher 
to have access to a large number of instances and instances’ 
data, SuMo also includes simCloudData module. This 
module provides access to a set of functions for creating 
“simulated” (or synthetic) instances and the associated data 
(e.g., utilization). Users can configure all the basic 
parameters (machine type, region, operating system, status, 
instance usage) for creating the simulated  instances. 
Furthermore, the “simulated” data/information produced by 
simCloudData can be used by the methods available to the 
other modules, without any other requirements or 
modificatons, since these are in the same format as the data 
produced by cloudData module’s methods. Some of the 
most important functions of simCloudData module are the 
following: 

x get_instances: creates a number of “simulated” instances 
x get_aws_statistics: creates “simulated” statistics data, 

based on user preferences 
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Common Problems
Useless content 
Bad color choices 

- Indistinguishable, childish, etc 

Fonts need to be bigger! 
No caption to explain 

- I prefer useful captions instead of “title” captions

41
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Color to BW
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Color to BW
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Relationships
Most good diagrams focus on the relationships 
between different components/concepts 
A good diagram should help a reader use the "black 
box" technique to filter out aspects of the work that 
are less important to them
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SoCC ’21, November 1–4, 2021, Sea�le, WA, USA Mi�al et. al.
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Figure 1: Mu Overview.

modulate the scaling decision and avoid potential Service
Level Objective (SLO) misses.

Average Execution Time: The queue proxy measures
the execution time of each request, which is the time between
forwarding the request to the user container and receiving
its response back. The average execution time ⇢)0E6 is the
Exponentially Weighted Moving Average (EWMA) of the
measured execution time. The function pod piggybacks this
metric to the ingress gateway, which passes on the average
execution time across all function pods to the Autoscaler.

DepartureRate andCon�denceRatio: Ideally, the queue
proxy would report the pod’s maximum service capacity, but
this metric can be di�cult to estimate, particularly if the in-
coming rate is low. Instead, Mu has the queue proxy report its
departure rate as well as a “con�dence ratio” that indicates
how fully loaded the server is. The calculation of these met-
rics is detailed in Algorithm 1. The queue proxy maintains a
con�dence �ag for each request, revealing whether the user
container is fully utilized (i.e., continuously has a queue of
waiting requests) when processing this request. The default
value of the con�dence �ag is 0. When a request arrives at
the queue proxy, it sets the con�dence �ag to 1 if the queue
size is larger than 0 (line 1-6). During the processing of a
particular request in the user container, the queue proxy
resets the con�dence �ag of that request to 0 if the queue
size drops to 0 (line 12-16), implying that the user container
is underloaded (departure rate is smaller than capacity).

Rather than choosing a �xed time interval for measuring
estimated capacity, we adapt it based on the time scale of
the request execution. The time interval for updating the
estimated capacity is )2 . If the average execution time ⇢)0E6
increases, the time interval )2 increases accordingly (line
17-19), so as to collect su�cient responses in )2 for a more
accurate departure rate estimate. When the average execu-
tion time ⇢)0E6 reduces, the time interval)2 drops (line 20-22),
so as to update the departure rate quickly. When there are
no requests in time interval )2 , then )2 will be reduced by

half to react quickly for future requests, until )2 is back to
its default value of 1 sec. (line 24-28).
Every time interval )2 , the queue proxy computes the

departure rate and con�dence ratio. The departure rate is
then smoothed using EWMA (line 30-35). The con�dence
ratio is the ratio of the requests whose con�dence �ag is 1
to the total requests in the time interval )2 (line 36-40). If
the user container is fully utilized in )2 , the con�dence ratio
is 1 and the actual capacity will be close to the departure
rate. Both of these values are propagated to the load balancer,
enabling it to make an estimate of a pod’s maximum service
capacity, i.e., ⇠0?4 and share with the Autoscaler.

3.2 Incoming Rate Prediction
Serverless platforms based on the Kubernetes architecture
can take ~2-5 seconds to instantiate a pod. To avoid queuing
and potentially missing the SLO for a request while waiting
for a pod to startup, it is desirable to predict the incoming
rate of requests. Thus, the Autoscaler can make proactive
pod provisioning decisions. However, the prediction mecha-
nism must be e�cient and robust, since there may be a wide
range of functions being deployed. Moreover, with many
workloads having vastly di�erent request rates, model pa-
rameters cannot be hand-tuned.
In Mu, we propose a lightweight regression-based incre-

mental learning mechanism (Algorithm 2). The model uses
linear regression to train and predict the workload in an
online manner, eliminating the need to pro�le each function
in advance. For incremental or online training of the models,
we use Stochastic Gradient Descent. We propose a best-�t
search prediction algorithm, where we simultaneously run
many lightweight instances of the regression model with
di�erent hyperparameters, and dynamically select the model
with minimum running error. Two hyperparameters are cru-
cial in determining model performance:
Input window size: Each model takes a window of the pre-
vious n incoming rates as input and predicts the incoming
rate for the next epoch. Di�erent values of n are required to
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Diagrams vs Results
Diagrams can explain experimental setup
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Yue et al., Sci. Adv. 2021; 7 : eabf7467     22 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 14

after the learning phase, and the peak narrowed at both rest and 
running states (fig. S5, B and C), reflecting less variation in stimulus 
coding. The evolution of event rates corresponded with the mouse’s 
development of skill on the running wheel (Fig. 1), consistent with 
previous findings, demonstrating less cortical activation when exe-
cuting a well-practiced, as opposed to new, motor behavior (26–29).

We next examined whether the M1 circuit in WT or null mice 
responded to changes in wheel speed. We found that a portion of 

the L2/3 and L5a ensembles responded with a higher event rate in 
the 10-s period after the change than in the 5-s period before the 
change (Fig. 2E). Comparing these transition-associated responses 
at each transition between day 2 (learning phase) and day 10 
(consolidation phase), we found that, after learning, ~20% fewer 
L2/3 neurons in both WT and Mecp2-null mice responded to the 
initial transition from rest (speed 0) to 15 mm/s, and fewer L5a neurons 
(~25% for WT and ~15% for Mecp2-null mice) responded to 

B

D

A

C

E

G H

F

Fig. 1. Following the development of motor skill in forced wheel running. (A) The experimental setup. A mouse, whose head is fixed under a two-photon microscope, 
runs on the computerized wheel, whose speed is controlled by the experimenter. Scale bar, 50 µm. (B) Top: Video frames of forepaw movements at three representative 
time points, with paw locations labeled by DeepLabCut. Bottom: Sample temporal traces for the left and right paws of one mouse moving at 60 mm/s on the wheel. The 
paw location at any given moment is calculated as the distance between the median paw location and location at that time. (C) Automated stride analysis. x and y axes 
represent horizontal and vertical paw movements, respectively. A step is represented by the rising phase of a spike in x and a complete spike in y. (D) The average number 
of strides completed by the left paw at each speed (during increasing-speed mode) over the training period. Error bars represent means ± SE. n = 13 mice for WT group; 
n = 15 for Mecp2-null group. **P < 0.01, repeated measures analysis of variance (RM-ANOVA) with Sidak’s post hoc test. (E) Stride number (left) and stride length (right) at 
speed 60 mm/s over 14 successive days. **P < 0.01 and ***P < 0.001. (F) Left: Comparison of stride length between genotypes every 10 s during the 2-min block of 
speed 60 mm/s on days 2 and 10, fitted with a straight line. Right: Within-genotype comparisons of stride length during early learning (day 2) and consolidation (day 10) 
phases. *P < 0.05. (G) Sample temporal traces for the forepaws of a mouse running at speed 60 mm/s shows improved coordination (anticorrelation) by day 10. (H) Coor-
dination at speed 60 mm/s improves over the 14-day training period. The coordination index was calculated as the negative value of the correlation coefficient of the two 
forepaw traces during the 2-min block of speed 60 mm/s. n = 13 mice for WT group; n = 15 for Mecp2-null group. *P < 0.05, ***P < 0.001, RM-ANOVA test. ns, not significant.
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From "Motor training improves coordination and anxiety in symptomatic Mecp2-null mice despite impaired functional connectivity within the motor circuit" by Simha and friends
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Diagrams of Results
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Arx-EQ [14] !"#$%& 2 — !" " ◔ # ! !" # # # # # legacy compliant
Kamara-Papamanthou [106] '()*+, 2 — !" " ◔ # — — # " " # # parallelizable
Blind Storage [100] '()*+, 2 — !" " ◔ # ! !" # !" # !" # low ! work
Sophos (Σo#o$) [101] '()*+, 2 — !" " ◔ # ! !" " !" # # # !"#$"%& w/ '(%"$)
Stefanov et al [107] '()*+, 2 — !" " ◔ # ! !" # " " # # !"#$"%& w/ '(%"$)
vORAM+HIRB [120] -./01 2 — !" " " # ! # # " " " ◔ history independ.
TWORAM [121] -./01 2 — !" " " # — — !" " " !" ◔ const round
3PC-ORAM [124] -./01 3 !" !" " " # ! ◔ # " " " ◔ dual !

B
o
o
le

an

DET [15], [92] !"#$%& 2 — !" ◕ ◕ # ! # # !" !" # # supports JOINs
BLIND SEER [16], [17] '()*+, 3 # # " !" !" ! # !" !" " " ◔ hide field, %&’s
OSPIR-OXT [18]–[21], [104] '()*+, 3 # !" " !" # ! # !" !" !" ◕ # excels w/ small %1
Kamara-Moataz [102] '()*+, 2 — !" " !" " — — !" !" " # ◔ relational SPC

R
an

ge

OPE [93]–[95] !"#$%& 2 — !" # # # ! # # # # # # leak some content
Mutable OPE [97] !"#$%& 2 — !" # # # ! !" # " " " !" interactive
Partial OPE [111] '()*+, 2 — !" " # # ! !" # # # !" # fast insertions
Arx-RANGE [110] '()*+, 2 — !" " !" # ! !" !" " " # " non-interactive
SisoSPIR [22] -./01 3 !" !" " " " ! # # # # " ◔ split, non-colluding !

O
th

er

GraphEnc1 [116] '()*+, 2 — !" !" ◔ " ! !" # # # # ◔ approx. graph dist.
GraphEnc3 [116] '()*+, 2 — !" !" !" " ! !" " # # # # approx. graph dist.
Chase-Shen [109], [126] '()*+, 2 — # " !" " ! ◔ # # # !" # substring search
Moataz-Blass [123] -./01 2 — !" " " # ! # # " " " ◔ substring search

TABLE II
SUMMARY OF THE SECURITY, PERFORMANCE, AND USABILITY OF BASE QUERIES. " AND ! DENOTE THE QUERIER AND THE SERVER, RESPECTIVELY. WE PRESUME THAT THE

ADVERSARY KNOWS THE DATABASE SIZE ' AND THE LENGTH OF EACH RECORD. FOR SYSTEMS THAT EITHER DO NOT SUPPORT INSERT OR USE A SIDE INDEX, THE INSERT COST IS

THE AMORTIZED COST OF ADDING A SINGLE RECORD DURING '(*). LEGENDS FOR EACH COLUMN FOLLOW. IN ALL COLUMNS EXCEPT “INIT/QUERY LEAKAGE,” BUBBLES THAT ARE

MORE FILLED IN REPRESENT PROPERTIES THAT ARE BETTER FOR THE SCHEME.

SCALE TESTED UPDATABLE THREATS DATA SENT INIT/QUERY LEAKAGE

!– BILLIONS

"#– MILLIONS

◔– THOUSANDS

!– INSERT IN MAIN INDEX

"#– BUILD SIDE INDEX

#– NOT SUPPORTED

!– MALICIOUS

"#– SEMI-HONEST

(BEYOND RESULTS)
!– CONSTANT

"#– ADDITIVE POLYLOG(')
◔– MULT. POLYLOG(')
#– EVEN MORE

(SEE SECTION II-E)
!– ORDER/CONTENTS

◕– EQUALITY

"#– PREDICATE

◔– IDENTIFIER

#– STRUCTURE

TYPE OF CRYPTO CRYPTO OPS PER RECORD ROUND TRIPS

!– SYMMETRIC

"#– BATCHED OR PRE-
COMPUTED PUBLIC-KEY

#– PUBLIC-KEY

!– CONSTANT

"#– # KEYWORDS

#– LOGARITHMIC

!– 1
◕– 2
"#– CONSTANT

#– LOGARITHMIC

Required
! leakage

Required attack
conditions

Attack efficacy

Attacker goal Init Query Ability
to inject
data

Prior
knowledge

Runtime Sensitivity
to prior
knowledge

Keyword
universe
tested

Attack name

Q
ue

ry
R
ec

ov
er

y

" " — ◔ # ? " Communication Volume Attack [125]
" ◔ ! " " " " Binary Search Attack [127]
" ◔ — ◔ # ? " Access Pattern Attack [125]
" ◔ — ◕ !" # # Partially Known Documents [128]
" ◔ ! ◕ !" " # Hierarchical-Search Attack [127]
" ◔ — # !" # # Count Attack [128]

D
at

a
R
ec

ov
er

y " ◔ — !" # # !" Graph Matching Attack [129]
◕ — — !" " ? " Frequency Analysis [130]
◕ — ! !" " ? # Active Attacks [128]
◕ — — ◕ " ? # Known Document Attacks [128]
# — — !" " " # Non-Crossing Attack [131]

TABLE III
SUMMARY OF CURRENT LEAKAGE INFERENCE ATTACKS AGAINST PROTECTED SEARCH BASE QUERIES. ! IS THE SERVER AND THE ASSUMED ATTACKER FOR ALL ATTACKS LISTED.

! LEAKAGE SYMBOLS HAVE THE SAME MEANING AS IN TABLE II. EACH ATTACK IS RELEVANT TO SCHEMES IN TABLE II WITH AT LEAST THE ! LEAKAGE SPECIFIED IN THIS

TABLE. SOME ATTACKS REQUIRE THE ATTACKER TO BE ABLE TO INJECT DATA BY HAVING THE PROVIDER INSERT IT INTO THE DATABASE. LEGENDS FOR THE REST OF THE

COLUMNS FOLLOW. IN ALL COLUMNS EXCEPT “KEYWORD UNIVERSE TESTED,” BUBBLES THAT ARE MORE FILLED IN REPRESENT PROPERTIES THAT ARE BETTER FOR THE SCHEME

AND WORSE FOR THE ATTACKER.

PRIOR KNOWLEDGE RUNTIME (IN # OF KEYWORDS) SENSITIVITY TO PRIOR KNOWLEDGE KEYWORD UNIVERSE TESTED

!– CONTENTS OF FULL DATASET

◕– CONTENTS OF A SUBSET OF DATASET

"#– DISTRIBUTIONAL KNOWLEDGE OF DATASET

◔– DISTRIBUTIONAL KNOWLEDGE OF QUERIES

#– KEYWORD UNIVERSE

!– MORE THAN QUADRATIC

"#– QUADRATIC

#– LINEAR

!– HIGH

#– LOW

? – UNTESTED

!– > 1000
"#– 500 TO 1000
#– < 500

From "Sok: Cryptographically protected database search" by Yerukhimovich and friends
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Condensing Information
A diagram is a way of extracting out the key 
concepts of a complex system or phenomenon 

If you don't know how to draw it, you probably don't 
fully understand it yourself! 

Practice sketching out your systems/algorithms/
concepts as diagrams to help in conversations with 
your advisor/collaborators 

- Communication is much more efficient with a whiteboard! 
- Don't let your advisor do all the drawing!
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Let’s make a diagram…
Goals: 
Clean, consistent shapes 
Clear connections between components 
Useful colors 
Looks good in print
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Running Experiments
I ran an experiment where I evaluated the 
effectiveness of my new operating systems, TimOS 

When running BenchmarkX, TimOS had a score of 
250,000! 

Am I done? What do you need to know to interpret 
these results?
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An experiment is a sample
The result of an experiment is not "truth" 
It is a sample, drawn from a population of possible 
results for your combination of Task, System, and 
Environment 

- In some cases one experiment gives you many samples, e.g., 
accuracies of 10,000 images classified, response time of 10M 
requests, etc
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Data Analysis
You need to look closely at your data! 

Is it consistent? 
- Always repeat experiment where possible 

Does it match your expectation? 
- You should have had a mental model for the expected result
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Detailed Statistics
Average is not enough 
Often you need to understand the distribution 
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Bar vs Line Graphs
Bar graphs let you break the "axis must be 
consistently spaced" rule 
Or use bars when measurements along x-axis are 
not ordered (categories of values, experiment #, etc) 
Whenever you connect the dots, think about their 
meaning
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More Bars
For % of whole, why not use pie chart?
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Table 1

For each exam 
monitoring type 
please select how 
comfortable you 
feel about them. 
Q27

Very comfortable Comfortable Neither 
comfortable nor 
uncomfortable

Uncomfortable Very 
uncomfortable

Lockdown 
Browser

25% 29% 25% 15% 6%

Keyboard Restr. 18% 28% 22% 20% 13%

Live Proctor 21% 24% 13% 28% 15%

Mouse Tracking 10% 27% 28% 16% 19%

Screen Rec. 16% 18% 17% 25% 25%

Webcam Rec. 10% 18% 16% 24% 33%

Mic. Rec. 13% 13% 15% 25% 34%

Browser Hist. 7% 17% 12% 27% 37%

Eye Tracking 5% 13% 12% 30% 40%

Lockdown Browser
Keyboard Restr.

Live Proctor
Mouse Tracking

Screen Rec.
Webcam Rec.

Mic. Rec.
Browser Hist.
Eye Tracking

0% 25% 50% 75% 100%

Very comfortable Comfortable
Neither comfortable nor uncomfortable Uncomfortable
Very uncomfortable

1

Figure 7: Comfort with monitoring types (Q28).

Lockdown Browser
Webcam Rec.

Screen Rec.
Live Proctor

Microphone Rec.
Browser Hist.

Keyboard Rest.
Eye Tracking

Mouse Tracking

0% 25% 50% 75% 100%

Almost Always Often Sometimes
Seldom Never

Figure 8: Necessity of monitoring types (Q27).

ticipants were required to do just that (Q18). Participants
also reported that many forms of personal information were
required during account creation and before taking an exam,
such as full name (n = 56; 55 %), student ID number (n = 52;
51 %), email address (n = 51; 50 %), educational institution
(n = 39; 38 %), birth date (n = 29; 28 %), phone number
(n = 19; 19 %), residential address (n = 16; 16 %), driver’s
licence number (n = 10; 10 %), and social security number
(n = 7; 7 %) (Q19; see Figure 11 in Appendix B). For some
participants, physical documentation was required; these in-
cluded student IDs (n = 56; 55 %), driver’s licenses (n = 32;
31 %), and passports (n = 7; 7 %) (Q20; see Figure 12 in
Appendix B). When asked if they were concerned about
sharing this kind of information with online exam proctoring
companies, most participants (n = 62; 61 %) agreed (n = 38;
37 %) or strongly agreed (n = 24; 24 %) (Q34). Of those who
responded with concerns (Q35), being uncomfortable shar-
ing personal information was the most common explanation
(n = 28; 27 %). For instance, P91 shared, “I feel uneasy that
in order to take an exam, I have to share personal information,”
and P45 said, “I understand that if I opt to take a test online it
needs to be fairly taken, but that doesn’t mean I should open
up these proctoring companies up to my home. . . ”

Data collection was also a concern for some participants
(n = 17; 17 %). For example P101 responded, “I am not sure
what they will do with my information and how long they will
store/keep my information,” and P58 shared, “For things like
recording my computer, or accessing my browser history, I
feel like that could invite abuse that go beyond simply making
sure I’m honestly taking an exam. . . ” Other participants (n =
28; 27 %) had no concerns about sharing information with
exam proctoring services, such as P53, who said, “I’m not
anymore [sic] worried about it than I am sharing my info with
the school,” and P48, who said, “I feel since it was required
by my school it is a safe place to share information.”

Privacy Trade-off When asked if they thought online exam
proctoring was too privacy invasive, 52 % (n = 53) of study
participants agreed (n= 25; 25 %) or strongly agreed (n= 28;
27 %) that it was too privacy invasive (Q36). There was a
split between those who agreed that online exam proctoring
offered a reasonable trade-off between personal privacy and
exam integrity and those who disagreed (Q37). Forty-one
percent (n = 42) of participants agreed (n = 30; 29 %) or
strongly agreed (n = 21; 21 %) while 39 % (n = 39) of partic-
ipants disagreed (n= 24; 24 %) or strongly disagreed (n= 15;
15 %). We also find evidence of split opinions regarding on-
line proctoring in the qualitative results. In response to Q11,
n = 11 (11 %) of participants reported that there was a trade-
off between privacy and academic integrity. For example,
P41 noted, “I think it is a valid reason to use online exam
proctoring . . . during this time pandemic. . . . I can understand
giving up some privacy to ensure integrity of exam results.”

Participants also reported being concerned about the
amount of information that online proctoring services col-
lect during the exam (Q38). Fifty-seven percent (n = 58) of
participants agreed (n= 33; 32 %) or strongly agreed (n= 25;
25 %), while 26 % (n = 26) of participants disagreed (n = 21;
21 %) or strongly disagreed (n = 5; 5 %). We again see sim-
ilar results in qualitative responses in Q11: 59 % (n = 60)
reported a privacy concern, with concerns about webcam ac-
cess being the most common (n = 27; 26 %). For example,
P65 reported, “I believe that online exams can be invasive,
as at least mine required both a webcam and microphone, so
they could see me and my room and hear my surroundings,”
and P36 responded:

. . . Unlike in-class proctoring, students must be filmed in
their homes . . . The view is also on the student 100 % of
the time so the student cannot relax and has their entire
body language and quirks on display. It is a breach of
privacy without enough benefit to justify it.

Some participants (n = 6; 6 %) had concerns about relin-
quishing control of their computing devices to the exam proc-

From "Examining the Examiners: Students’ Privacy and Security Perceptions of Online Proctoring Services", by Aviv and friends
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Histogram or PDF
How many samples occurred within each bucket 
range? 
Or, what is the probability of hitting a certain range?  

- Normalized histogram or continuous PDF
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CDF
Cumulative Distribution Function 
What percent of samples had this score or lower 
How to read? 

- Find quartiles and 99 percentile on y-axis and go right until you 
hit the line, then down to the x-axis
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Mu: An E�icient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Table 4: Experiment con�guration
Parameter/Speci�cation Values

Invocation Range W-1 41-230 rps
W-2 69-182 rps

Average invocations W-1 154 rps
W-2 146 rps

Container Concurrency 4
Grace Flag (Mu only) 16

Execution time 500ms
Maximum pod capacity 48
CPU and Mem. per pod 7 cores, 30GB

Target RPS 8
CC 40

SLO 5 seconds

20k

CRncurrency

0 5k 10k 15k 20k
response time (ms)
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Mu

Figure 8: Response time CDF for 3 frameworks for Workload 1 (left);
Workload 2 (right; only partial CDF for Concurrency)

require less than 400MB memory while 10% of functions re-
quire 500⇠2000MB memory. The CPU demand of functions
ranges from 1⇠8 cores. Each function requests 1⇠16 pods.
To ensure demand exceeds the resources in the cluster, the
total CPU capacity of the cluster is set to 80% of the total
CPU demand and the total memory capacity is set to 60% of
the total memory demand. We use Gurobi [14] to solve the
ILP models, adjusting the accuracy and termination criterion
to keep computation time manageable.
Fig. 7(a) shows the fairness (as de�ned in Eq. 7) of the

allocation decisions for the CPU and memory. The 3 DRF
heuristic-based algorithms (which are all close to each other)
achieve 2⇥ better fairness than the ILP0, which does not
consider fairness in its optimization. ILP1 considers the fair-
ness in the formulation, and achieves better fairness than the
ILP0. However, with the accuracy and termination criteria
we used with the solver, ILP1 achieves better e�ciency but
poorer fairness than the DRF heuristic algorithms. The worst
algorithm in terms of fairness is the Kubernetes Default ap-
proach. Comparing CPU e�ciency (Fig. 7(b)), the DRF heuris-
tics have an unmet CPU demand of ⇠10 cores on average,
which is slightly worse than the ILP models. The Kubernetes
Default is also better, with an average unmet CPU demand
of ⇠8 cores. All the alternatives have similar memory e�-
ciency, resulting in an average of ⇠ 130"⌫ unmet memory
demand. Thus, the DRF heuristic approaches strike a good
balance of having very good fairness, and are close to the
best case e�ciency of the Kubernetes Default algorithm
(which however ignores fairness).

In Mu’s deployment, the placement engine is executed once
every epoch (2 seconds, driven by the autoscaler). In terms of
computation time, the Default Kubernetes approach takes
⇠200 ms. The DRF heuristics are also fast, taking ⇠500 ms to
determine the placement of 300 functions among 40 nodes.
However, the ILP models, depending on the accuracy desired,
take much more time (> 2 seconds on a server-class machine)
and are impractical for real-time placement use. The DRF
approaches, on the other hand, are feasible for deployment.

4 Overall Mu Implementation & Evaluation
We now integrate all the components of Mu, and evaluate
it for a few large scale workloads. We compare Mu with the
Knative default approaches.

Implementation Details and Testbed Setup: Mu’s implementa-
tion extends multiple components in the Knative ecosystem,
including the Knative Queue-Proxy, Istio Gateway, Knative
Autoscaler, and Kubernetes Scheduler (placement engine).
We base our code on Kubernetes v1.17.0, Istio’s Envoy Proxy
v1.16.0, and Knative v0.13.0. Our extensions comprise ⇠1,000
lines of code added for the Autoscaler, ⇠500 lines for the load
balancer and metrics server, ⇠200 lines for the queue-proxy,
and ⇠800 lines for the placement engine. We evaluate the
serverless platforms on the Cloudlab testbed [23] consisting
of one master and ten worker nodes, each of them equipped
with Two Intel E5-2660 v3 10-core CPUs at 2.60 GHz (40
hyperthreads per host) and 160 GB ECC memory running
Ubuntu 18.04.1 LTS. We do not add any extra pod hetero-
geneity in this experiment other than the natural �uctuations
found on CloudLab.
4.1 Overall Mu Performance
To comprehensively evaluate Mu, we use the workloads re-
ceived by functions in the Azure dataset [26]. We select 2
workloads with variable invocation patterns from the top
10 workloads sorted by maximum number of invocations
for the �rst day in the dataset. We scale down these work-
loads by dividing the number of invocations by 100 for the
experiment, treating each minute of the original trace as one
second to add dynamics. The scaled down workload and the
con�guration of the serverless environment are in Table. 4.
With the combined Autoscaler, Load Balancer, and Placement
Engine, Mu achieves better overall performance for requests
to serverless functions, even if the system is subject to a sig-
ni�cantly heavy load, and more fairly allocates the limited
edge cloud resources among the competing functions.
Latency and Fairness: The CDF of the response times for

each workload and approach is shown in Fig. 8. Mu has good
control over the response times and limits the tail latency that

Avg:
7765
2605
1020
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(b) Key-value store.
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(c) Sentiment analysis.

Figure 3: Response time distribution of different functions.
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Figure 4: (a) Capital expense costs, and (b) Maximum
power usage, as we increase the cluster size.

pods need to be warmed up on the offload devices at all times
– this approach can incur a small computation overhead.

6 RELATED WORK
Recent research on SmartNICs focuses on leveraging the

compute power to offload various application workloads [11,
17, 19, 24]. The research focuses on moving small functions
onto the SmartNIC OS, while AKIDA is a framework that
can offload complete workload containers onto the Smart-
NIC OS, leveraging the separated-host mode (Sec 2.1) of
SoC-based SmartNICs. Most other research on SmartNIC
hardware offloading is limited to network functions such as
load-balancing, firewall, etc. [16]. In AKIDA, we differenti-
ate by offloading application workloads as containers and not
just functions. We showcase the benefit and also explore the
challenges.

Traffic spike management is a well-explored problem space
in the cloud and networks [18, 21], where user queries surge
can lead to downtime and poor QoE. At the edge, it can be
pretty challenging to deal with traffic spikes, and the most
common business solution is over-provisioning of computing
resources [13, 22]. We differentiate by utilizing SmartNICs to
address transient spikes at the edge, thereby enabling transient
elasticity of resources. As SmartNICs are limited in compute
capacity, it is very critical to offload essential workload, and
therefore AKIDA’s approach to offload only during traffic
spikes validates the approach given the CAPEX and OPEX
savings without much application performance degradation.

In that aspect, Serverless applications are gaining popu-
larity to be deployed at the edge for AI, security, storage

workloads [9, 25]. Certain body of research have explored of-
floading functions of applications onto SmartNICs processing
units[11, 17, 19]. For instance, Lambda-NIC [11] demon-
strates offloading data plane programming functionality of
serverless applications to ASIC SmartNICs. While iPipe [17]
offloads applications designed in actor-programming model.
In AKIDA, we adopt a novel approach of offloading the
entire containerized serverless application (small function
containers) onto the SoC-based SmartNIC OS by establish-
ing SmartNIC OS as nodes in the cluster network. While we
move the whole container to the Smartnic, [11] rely on P4
programmability to offload small part of applications to the
SmartNic. In [11] the host and the Smartnic are one single
node in the Kubernetes cluster and changing the application
requires code modification to offload to the SmartNic, while
in our framework, the SmartNic is one of the nodes in the
cluster and can leverage the Kubernetes orchestration system
for scheduling, auto-scaling, etc.

7 CONCLUSION
This paper proposes a new platform that leverages the

SmartNICs’ computational capacity to offload and acceler-
ate serverless workload in the presence of transient traffic
spikes at a lower cost. Our solution is three-fold. First, we
propose a novel system architecture leveraging container or-
chestration systems to distribute the workloads between Hosts
and SmartNICs based on demand for transient elasticity of
resources. The next challenge we solve is to manage the work-
load spikes by exploiting the unused computational capacity
of the SmartNICs to avoid SLA violations. Finally, we pro-
pose a novel workload prediction approach that predicts the
transient spikes and starts the containers before the actual
load arrives in the system to mitigate the containers’ cold start
latency. Accounting for transient elasticity using SmartNICs
has the added benefit of provisioning a hybrid cloud and edge
deployment, with the flexibility to scale edge deployments
when required. This could lead to faster turnaround times for
system administrators in executing decisions to allocate com-
pute cycles. While this paper focuses on transient elasticity
for workload spikes, AKIDA architecture can be leveraged
for building a generalized system for federated edge infras-
tructure with heterogeneous DPUs like GPU and SmartNICs
etc.
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When to use CDF/PDF
Use when outliers/tail are 
important 
Histogram is often easier 
to read 
But, comparing multiple 
histograms takes a lot of 
space 
CDF is useful when 
comparing multiple 
distributions in one plot
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Table 4: Experiment con�guration
Parameter/Speci�cation Values

Invocation Range W-1 41-230 rps
W-2 69-182 rps

Average invocations W-1 154 rps
W-2 146 rps

Container Concurrency 4
Grace Flag (Mu only) 16

Execution time 500ms
Maximum pod capacity 48
CPU and Mem. per pod 7 cores, 30GB

Target RPS 8
CC 40
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Figure 8: Response time CDF for 3 frameworks for Workload 1 (left);
Workload 2 (right; only partial CDF for Concurrency)

require less than 400MB memory while 10% of functions re-
quire 500⇠2000MB memory. The CPU demand of functions
ranges from 1⇠8 cores. Each function requests 1⇠16 pods.
To ensure demand exceeds the resources in the cluster, the
total CPU capacity of the cluster is set to 80% of the total
CPU demand and the total memory capacity is set to 60% of
the total memory demand. We use Gurobi [14] to solve the
ILP models, adjusting the accuracy and termination criterion
to keep computation time manageable.
Fig. 7(a) shows the fairness (as de�ned in Eq. 7) of the

allocation decisions for the CPU and memory. The 3 DRF
heuristic-based algorithms (which are all close to each other)
achieve 2⇥ better fairness than the ILP0, which does not
consider fairness in its optimization. ILP1 considers the fair-
ness in the formulation, and achieves better fairness than the
ILP0. However, with the accuracy and termination criteria
we used with the solver, ILP1 achieves better e�ciency but
poorer fairness than the DRF heuristic algorithms. The worst
algorithm in terms of fairness is the Kubernetes Default ap-
proach. Comparing CPU e�ciency (Fig. 7(b)), the DRF heuris-
tics have an unmet CPU demand of ⇠10 cores on average,
which is slightly worse than the ILP models. The Kubernetes
Default is also better, with an average unmet CPU demand
of ⇠8 cores. All the alternatives have similar memory e�-
ciency, resulting in an average of ⇠ 130"⌫ unmet memory
demand. Thus, the DRF heuristic approaches strike a good
balance of having very good fairness, and are close to the
best case e�ciency of the Kubernetes Default algorithm
(which however ignores fairness).

In Mu’s deployment, the placement engine is executed once
every epoch (2 seconds, driven by the autoscaler). In terms of
computation time, the Default Kubernetes approach takes
⇠200 ms. The DRF heuristics are also fast, taking ⇠500 ms to
determine the placement of 300 functions among 40 nodes.
However, the ILP models, depending on the accuracy desired,
take much more time (> 2 seconds on a server-class machine)
and are impractical for real-time placement use. The DRF
approaches, on the other hand, are feasible for deployment.

4 Overall Mu Implementation & Evaluation
We now integrate all the components of Mu, and evaluate
it for a few large scale workloads. We compare Mu with the
Knative default approaches.

Implementation Details and Testbed Setup: Mu’s implementa-
tion extends multiple components in the Knative ecosystem,
including the Knative Queue-Proxy, Istio Gateway, Knative
Autoscaler, and Kubernetes Scheduler (placement engine).
We base our code on Kubernetes v1.17.0, Istio’s Envoy Proxy
v1.16.0, and Knative v0.13.0. Our extensions comprise ⇠1,000
lines of code added for the Autoscaler, ⇠500 lines for the load
balancer and metrics server, ⇠200 lines for the queue-proxy,
and ⇠800 lines for the placement engine. We evaluate the
serverless platforms on the Cloudlab testbed [23] consisting
of one master and ten worker nodes, each of them equipped
with Two Intel E5-2660 v3 10-core CPUs at 2.60 GHz (40
hyperthreads per host) and 160 GB ECC memory running
Ubuntu 18.04.1 LTS. We do not add any extra pod hetero-
geneity in this experiment other than the natural �uctuations
found on CloudLab.
4.1 Overall Mu Performance
To comprehensively evaluate Mu, we use the workloads re-
ceived by functions in the Azure dataset [26]. We select 2
workloads with variable invocation patterns from the top
10 workloads sorted by maximum number of invocations
for the �rst day in the dataset. We scale down these work-
loads by dividing the number of invocations by 100 for the
experiment, treating each minute of the original trace as one
second to add dynamics. The scaled down workload and the
con�guration of the serverless environment are in Table. 4.
With the combined Autoscaler, Load Balancer, and Placement
Engine, Mu achieves better overall performance for requests
to serverless functions, even if the system is subject to a sig-
ni�cantly heavy load, and more fairly allocates the limited
edge cloud resources among the competing functions.
Latency and Fairness: The CDF of the response times for

each workload and approach is shown in Fig. 8. Mu has good
control over the response times and limits the tail latency that

Avg:
588
880
952
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Box-Plots 
Quickly display summary statistics and allow easy 
comparison
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Whiskers: Min & Max
center line: Median (50%ile)

top/bottom: 75/25th %ile
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Boxplot Variations
Whiskers aren't always 
max/min 
Might show another 
statistics such as 2nd 
and 98th percentile, 
with outlier points 
explicitly shown 
Paper should specify 
what the whiskers 
show
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Violin Plots
Like a box plot, but shows the full distribution 
More descriptive 
Useful if comparisons have a fundamentally different 
distribution
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???
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Same Stats, Different Graphs
https://www.autodesk.com/research/publications/
same-stats-different-graphs
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(a) Amazon Elasticity Space (b) Rackspace Elasticity Space (c) Amazon + Rackspace Elasticity Space

Figure 6: Monitoring Single and Multi-Cloud Elasticity Space

(a) 2006 Vs 2007

(b) 2007 Vs 2012

Figure 5: Amazon EC2 Elasticity Space History

Rackspace IaaS services data. A visualization built using the

Elasticity Space API of the two separate cloud providers
elasticity spaces and the multi-cloud elasticity space re-
sulting from their union is shown in Figure 6. From the
visualization we can see that the combination of the two
spaces creates in this case a larger elasticity space, providing
a wider range of options for cloud clients and allowing both
single and multi-cloud service selection in a uniform manner.

2) Monitoring Cloud Application Elasticity: This second
evaluation scenario highlights the Elasticity Space API ca-
pabilities for monitoring cloud applications elasticity space
and elasticity signature. The selected target application is
a distributed application deployed on multiple virtual ma-
chines. Our elasticity tool views it as a black box, only
accessing monitoring data provided by Ganglia [15] for
each of the virtual machines. The application is using
uniformly Amazon M1.Small EC2 instance types on our
OpenStack cloud and can instantiate a maximum of 5
machines, but the actual number of instantiated machines
varies with respect to its workload. This maximum num-
ber of 5 machines and their type defines the application
elasticity space on our cloud. Monitoring the application
elasticity signature (Figure 7) cloud clients can notice when
the currently reserved resources usage reaches 100% (Fig-
ure 7a) and how the increase of allocated resources by
increasing the number of running machines decreases the
overall resource usage, potentially avoiding performance
bottlenecks (Figure 7b and 7c). Monitoring cloud application
behaviour in terms of elasticity space and signature exposes
detailed information about the cloud application behaviour
and provides essential support for building automatic cloud
application elasticity management controllers.

VI. RELATED WORK

In [1] the authors present a comprehensive survey over
the economics and elasticity challenges in public clouds.
The challenges in managing cloud computing systems are
analysed in [2] and [21]. A business oriented view over cloud

Graphs
Stick with “standard” graph types  

- Unless you have a good reason 
- Standards: Scatter plot, line plot, bar plot 
- Avoid pie charts and “infographic” look 

Include error bars! 
- Use standard deviation 

or confidence interval
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Every graph in this paper 
was a radar chart… odd
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Graphs
What tool do you use to make plots? 

- gnuplot, matplotlib, seaborn, tableau, matlab, R… 

Avoid tools like Excel 
- Most papers I review with Excel graphs I reject (not usually 

because of the graphs, but it is a sign of amateur-ness) 
- OK for initial data exploration by yourself 

Use the same tool as your lab-mates 
- Have lab scripts for making beautiful graphs
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Jupyter Notebooks
This is the "right" way to do it 
Browser-based (or VS Code 
extension!) editor and python 
runtime 
Parse, analyze, and visualize 
data all in one place 
Easy to share with others 

- Github displays rendered 
notebooks 

- Google Collab allows shared 
notebooks / execution 
environments
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Scripting Experiments
More experiments is more data 
More data is more information 
More information is more value 

- As long as you have the time to process it 

You should run as many experiments as possible 
- Uses scripts to automate gathering AND analyzing data as much 

as possible 
- Try to make general purposes scripts you can reuse in the future 

You will need to repeat experiments, so make it easy!
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Basic Shell Scripting
Often output of experiments is messy 
Bash scripts that combine basic Unix utilities are 
usually the fastest way to pre-process your data 
Or you can do this all in Python, but may be simpler 
as part of your experiment running scripts 
grep “exp1” file.data | awk ‘{print $3}’ | sort -n | tail   
sed - replace 
awk - processing rows / columns in a file 
grep - filtering
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What is wrong with this?

69
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What is wrong with this?

70

Needs axis labels 
No error bars 
Irregular x-axis 
Non-zero y-axis 
Font sizes too small 
Aspect ratio may be awkward in paper layout 

- Typically either want 2 square images or 1 wide image for 2-
column layout 
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Graph Tips
Use: 

- Thick lines 
- Very large fonts 
- Axis labels 
- Wide format
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• Avoid: 
- Similar colors (check BW!) 
- Non-0 starting axes 
- Titles (if you have caption) 
- Square aspect ratio
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Line Graphs…
My high school science teacher would (correctly) fail 
me for making this graph… why?
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Line Graphs…
My high school science teacher would (correctly) fail 
me for making this graph… why? 
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“Connect the dots” is really unscientific! 
Trend lines are way better! 

But this is what the community expects!
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Problem with this?
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Accessibility
Color blindness 

- 1 in 12 men, 1 in 200 women
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Accessibility
Color blindness 

- 1 in 12 men, 1 in 200 women 

Blindness 
- about 8 million people in the 

US have a visual disability 

Many types of disabilities 
to be aware of: sight, 
sound, touch, mobility 
Remember these!
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Visual Recipes
Slides: 

- Mixture of text and images 
- Keep bullets simple, fonts clear 
- Use animation sparingly for emphasis 

Diagrams: 
- Pick the right level of abstraction; focus on relationships 
- Use LARGE fonts! 
- Be sure colors work in B&W 

Graphs: 
- Use easy to understand plot types 
- Use thick lines and be sure they are distinguishable 
- Use LARGE fonts! 
- Be sure colors work in B&W
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