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Scientific Papers
So boring…
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Figure 5: Dependence of job completion time on cluster size (end-to-end, map and reduce phase), and input data size. In (d),
C1, C2, C4, C8, C16 represent virtual clusters with 1, 2, 4, 8, 16 nodes, respectively. Sort is used in (b), (c) and (d).

Algorithm 1 MapReduce Job Profiling Algorithm.

Input: Q: queue of incoming jobs, each specifying the input data
size and/or cluster size; DBprofile: profile database, containing
historic observations of job completion times (JCTs) (end-to-
end and separate for map and reduce phases), along with the
corresponding cluster sizes and input data set sizes.

1: for each job Ji in Q=J1,J2,...,Jn do
2: if LOOKUP CLUSTERSIZE(DBprofile, Ji) != NULL &

LOOKUP DATASIZE(DBprofile, Ji) != NULL then
3: JCTestimated=Retrieve(DBprofile, Ji(csize), Ji(dsize))
4: else if DBprofile does not contain exact match for Ji’s input

configuration then
5: if DBprofile contains different data size values for the same

cluster size (see Figure 5 (d)) then
6: Do linear extrapolation to get JCTestimated

7: else if DBprofile contains different cluster size values for
the same data size then

8: Do separate Map and Reduce phase based extrapolation
to get JCTestimated (see Figures 5 (a), (b), (c))

9: end if
10: end if
11: return JCTestimated

12: end for

Algorithm 2 Job Placement Algorithm.

Input: Q: queue of incoming jobs; Inputload: number of clients for
transactional or data size for MapReduce job; P CLUSTER:
cluster of physical nodes; V CLUSTER: cluster of virtual
nodes; JCTdesired[]: vector of jobs desired completion times.

1: for each job Ji in Q=J1,J2,...,Jn do
2: if Ji ∈ transactional workload then
3: Place Ji on V CLUSTER
4: else if Ji ∈ batch MapReduce workload then
5: Profile Ji using Algorithm 1 to obtain the vector of esti-

mated job completion time (JCTestimated[]).
6: if JCTestimated[i] ≥ JCTdesired[i] then
7: Place Ji on P CLUSTER
8: else
9: Place Ji on V CLUSTER
10: end if
11: end if
12: return jobs assigned to P CLUSTER and V CLUSTER
13: end for

configuration of VMs or PMs, where the job will run, is
determined by the Phase II scheduler, as described next.

B. Phase II Scheduler

The goal of the Phase II Scheduler is to efficiently man-
age the resources of the virtual cluster across transactional

and MapReduce jobs in order to comply with the SLA of
interactive jobs, while providing the best effort performance
guarantees to the MapReduce applications. Figure 7 shows the
overall architecture of the Phase II Scheduler. It is composed
of two main components: (i) a Dynamic Resource Manager
(DRM); and (ii) an Interference Prevention System (IPS). The
DRM monitors the available capacity on each VM to guide
the placement of MapReduce jobs within the virtual cluster.
DRM records the resource consumption and completion times
of each task. This information is used to build a model for
each MapReduce job that correlates the resource allocation to
the constituent task completion time, allowing the scheduler
to make intelligent placement decisions. The IPS is an online
monitor that observes the performance of the interactive appli-
cations within the cluster to detect when they are not receiving
sufficient resources to meet their demands. If any interference
is detected, then the responsible map/reduce tasks are properly
handled. For example, the VM running the task can have its
resource share decreased, can simply be paused, or it can
even be migrated to a different host to mitigate the observed
interference. Even if the VM is aborted, the correctness of
the corresponding MapReduce job is not affected, since the
MapReduce master would initiate speculative execution [16],
assuming the task as a prospective straggler.
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Figure 7: Components of the Phase II Scheduler.

To illustrate the level of interference which may be caused
due to collocated VMs and/or contending tasks within the
same VM, we conduct a study, where 4 VMs are deployed
on a quad-core physical server, and run a mix of CPU and
I/O bound MapReduce jobs. Each VM is pinned to a core,
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OS combination Total memory Shareable pages Predicted server memory
Linux 2.6.9, Darwin 9.0.0, Windows NT 5.1 4223 MB 13.2% 3666 MB

Darwin 9.4.0, Darwin 9.0.0, Windows NT 5.1 5248 MB 35.3% 3397 MB
Darwin 9.2.0, Darwin 9.4.0, Darwin 9.0.0, Windows NT 5.1 6272 MB 36.8% 3966 MB

Darwin 9.4.0 (3 MacBook2 + 1 iMac7) 8192 MB 40.0% 4917 MB

Table 3. Server memory usage prediction for various colocation configuration. Total memory represents the total memory required without
sharing and predicted memory is the required memory on the server when all possible sharable pages are actually shared.
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Figure 10. Splitting each page into multiple chunks allows Mem-
ory Buddies to detect sub-page level sharing between similar pages.

ing can be the dominant cost, we also present the time when lists
are presorted by each VM prior to sending the hash lists to the con-
trol plane. Presorting the lists decreases the comparison time by
about an order of magnitude, but incurs overhead on each host in
the system. Switching to Bloom filters reduces the time further, but
at the expense of reduced accuracy.

The total communication overhead of the system is dependent
on the number of VMs running in the data center, the amount of
RAM used by each VM, and the fingerprinting method used. Table
4 compares the cost of storing or transmitting Bloom filter based
memory fingerprints or hash lists of various sizes. Fingerprints only
need to be gathered once every few minutes, incurring minimal
network cost if there is a small number of VMs. For very large
data centers, the overhead of transmitting full hash lists can become
prohibitive, while the Bloom filter approach remains manageable.

Result: Employing Bloom filters in large data centers can re-
duce sharing estimation time by an order of magnitude and can
reduce network overheads by over 90%, while still maintaining a
high degree of accuracy.

7.7 Sub-Page Sharing
While VMware ESX currently only supports memory sharing at
the granularity of full pages, recent research has demonstrated that
significant benefits can be obtained by sharing portions of similar,
but not identical pages [8]. We have added preliminary support
to Memory Buddies for detecting sub-page level sharing between
systems by breaking each page into a series of n chunks, each of
which is mapped to a 32bit hash. As a result, Memory Buddies
produces a fingerprint n times as large for each system, but it can
use its existing fingerprint comparison tools to detect similarity
between different VMs.

To demonstrate the benefits of sub-page sharing, we have ana-
lyzed the amount of sharing achieved between two systems running
64bit Ubuntu Linux, each with 2GB of RAM, when the number of
hashes per page is varied between one and thirty two. Figure 10
illustrates how subpage level sharing can triple the total amount of
sharable memory. The number of hashes per page could be selected
by the system operator to balance the added overhead of larger fin-
gerprints against the increased accuracy in sub-page level sharing
estimation.

Result: Although Memory Buddies does not currently use a
hypervisor that supports sub-page level sharing, it can efficiently

detect similar pages by generating multiple hashes per page. This
can provide significant benefits in total sharing.

8. Related Work
Transparent page sharing in a virtual machine hypervisor was im-
plemented in the Disco system [3]; however it required guest oper-
ating system modification, and detected identical pages based on
factors such as origin from the same location on disk. Content-
based page sharing was introduced in VMware ESX [27], and later
in Xen [11]. These implementations use background hashing and
page comparison in the hypervisor to transparently identify identi-
cal pages, regardless of their origin. Since our prototype lacks ac-
cess to the memory hashes gathered by the hypervisor, we duplicate
this functionality in the guest OS. In Memory Buddies, however,
we extend the use of these page content hashes in order to detect
the potential for memory sharing between distinct physical hosts,
rather than within a single host.

The Difference Engine system was recently proposed as a
means to enable even higher degrees of page sharing by allow-
ing portions of similar pages to be shared [8]. Although Memory
Buddies has preliminary support for detecting sub-page sharing
across machines by using multiple hashes per page, it currently
relies on ESX’s sharing functions which do not support sub-page
level sharing. We believe that as the technologies to share mem-
ory become more effective and efficient, the benefits of using page
sharing to guide placement will continue to rise.

Process migration was first investigated in the 80’s [19; 26].
The re-emergence of virtualization led to techniques for virtual
machine migration performed over long time scales in [22; 28;
12]. The means for “live” migration of virtual machines incurring
downtimes of only tens of milliseconds have been implemented in
both Xen [5] and VMware [18]. At the time of writing, however,
only VMware ESX server supports both live migration and page
sharing simultaneously.

Virtual machine migration was used for dynamic resource allo-
cation over large time scales in [21; 25; 6]. Previous work [31] and
the VMware Distributed Resource Scheduler [29] monitor CPU,
network, and memory utilization in clusters of virtual machines
and use migration for load balancing. The Memory Buddies sys-
tem is designed to work in conjunction with these multi-resource
load balancing systems by providing a means to use page sharing
to help guide placement decisions. Moreover, offline planning of
memory resources for desktop virtualization can be predicted ac-
curately rather than relying on generic rules of thumb that are rec-
ommended by manufacturers.

Bloom filters were first proposed in [1] to provide a tradeoff be-
tween space and accuracy when storing hash coded information.
Guo et al. provide a good overview of Bloom filters as well as an
introduction to intersection techniques [7]. Bloom filters have also
been used to rapidly compare search document sets in [10] by com-
paring the inner product of pairs of Bloom filters. The Bloom filter
intersection technique we use provides a more accurate estimate
based on the Bloom filter properties related to the probability of
individual bits being set in the bit vector. This approach was used
in [15] to detect similar workloads in peer to peer networks.
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Why would anyone even  bother 
to read my paper?
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Stories
So much better!
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Stories
Science is about facts… 
Stories are about 
overcoming adversity... 
People love stories! 
People remember and 
pay attention to  
stories 
People are inspired 
by stories
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Writing Science Stories
Your papers must be: 

- Factual, accurate, unbiased, detailed, comprehensive 

But they should also be 
- Interesting 
- Memorable 
- Engaging 

How can we hook readers of our 
paper?  We need a recipe!

7



The Perfect Paper

A recipe.



Introductions

A recipe.
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Starting a Story
Introductions are by far the most important part of 
your papers* 

How to make a good introduction?
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*in my opinion



Recipe: 
Introduction 

The world is a terrible, terrible place.
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But imagine how wonderful it  
could be if we could figure 

out how to do X!
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My work helps us get one 
step closer to the magical 

dream world!
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Recipe: Introduction 
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The world is a 
terrible, terrible 

place.

But imagine how  
wonderful it could be if  

we could figure out  
how to do X!

My work helps us get 
one step closer to the 
magical dream world!
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You don’t have to be 
perfect!
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Recipes make it easy!
Following this flow makes it easy to make a 
compelling presentation or paper 

Gives you an outline so you know where to start 

Gives you a reliable structure that draws in the 
audience 

With this as a base you can expand as needed
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Examples…
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Papers are boring, 
unpleasant to read, 
and hard to write!

This presentation…
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Figure 5: Dependence of job completion time on cluster size (end-to-end, map and reduce phase), and input data size. In (d),
C1, C2, C4, C8, C16 represent virtual clusters with 1, 2, 4, 8, 16 nodes, respectively. Sort is used in (b), (c) and (d).

Algorithm 1 MapReduce Job Profiling Algorithm.

Input: Q: queue of incoming jobs, each specifying the input data
size and/or cluster size; DBprofile: profile database, containing
historic observations of job completion times (JCTs) (end-to-
end and separate for map and reduce phases), along with the
corresponding cluster sizes and input data set sizes.

1: for each job Ji in Q=J1,J2,...,Jn do
2: if LOOKUP CLUSTERSIZE(DBprofile, Ji) != NULL &

LOOKUP DATASIZE(DBprofile, Ji) != NULL then
3: JCTestimated=Retrieve(DBprofile, Ji(csize), Ji(dsize))
4: else if DBprofile does not contain exact match for Ji’s input

configuration then
5: if DBprofile contains different data size values for the same

cluster size (see Figure 5 (d)) then
6: Do linear extrapolation to get JCTestimated

7: else if DBprofile contains different cluster size values for
the same data size then

8: Do separate Map and Reduce phase based extrapolation
to get JCTestimated (see Figures 5 (a), (b), (c))

9: end if
10: end if
11: return JCTestimated

12: end for

Algorithm 2 Job Placement Algorithm.

Input: Q: queue of incoming jobs; Inputload: number of clients for
transactional or data size for MapReduce job; P CLUSTER:
cluster of physical nodes; V CLUSTER: cluster of virtual
nodes; JCTdesired[]: vector of jobs desired completion times.

1: for each job Ji in Q=J1,J2,...,Jn do
2: if Ji ∈ transactional workload then
3: Place Ji on V CLUSTER
4: else if Ji ∈ batch MapReduce workload then
5: Profile Ji using Algorithm 1 to obtain the vector of esti-

mated job completion time (JCTestimated[]).
6: if JCTestimated[i] ≥ JCTdesired[i] then
7: Place Ji on P CLUSTER
8: else
9: Place Ji on V CLUSTER
10: end if
11: end if
12: return jobs assigned to P CLUSTER and V CLUSTER
13: end for

configuration of VMs or PMs, where the job will run, is
determined by the Phase II scheduler, as described next.

B. Phase II Scheduler

The goal of the Phase II Scheduler is to efficiently man-
age the resources of the virtual cluster across transactional

and MapReduce jobs in order to comply with the SLA of
interactive jobs, while providing the best effort performance
guarantees to the MapReduce applications. Figure 7 shows the
overall architecture of the Phase II Scheduler. It is composed
of two main components: (i) a Dynamic Resource Manager
(DRM); and (ii) an Interference Prevention System (IPS). The
DRM monitors the available capacity on each VM to guide
the placement of MapReduce jobs within the virtual cluster.
DRM records the resource consumption and completion times
of each task. This information is used to build a model for
each MapReduce job that correlates the resource allocation to
the constituent task completion time, allowing the scheduler
to make intelligent placement decisions. The IPS is an online
monitor that observes the performance of the interactive appli-
cations within the cluster to detect when they are not receiving
sufficient resources to meet their demands. If any interference
is detected, then the responsible map/reduce tasks are properly
handled. For example, the VM running the task can have its
resource share decreased, can simply be paused, or it can
even be migrated to a different host to mitigate the observed
interference. Even if the VM is aborted, the correctness of
the corresponding MapReduce job is not affected, since the
MapReduce master would initiate speculative execution [16],
assuming the task as a prospective straggler.

MapReduce jobs
on virtual cluster Mn

Contention
Detector

Performance
Balancer

GRM Resource 
Profiler

Estimator

LRM

Transactional jobs
on virtual cluster In

I1

M1

CPU

Interference 
Models

Memory

I/O

DRM

Arbiter

IPS

Figure 7: Components of the Phase II Scheduler.

To illustrate the level of interference which may be caused
due to collocated VMs and/or contending tasks within the
same VM, we conduct a study, where 4 VMs are deployed
on a quad-core physical server, and run a mix of CPU and
I/O bound MapReduce jobs. Each VM is pinned to a core,
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People love stories, if your 
paper/presentation can be 
a fun story, everyone will 

want to see it!

With the right recipe, 
you can hook the 

audience and keep 
their attention!



Tim Wood - The George Washington University - Department of Computer Science

VM Security

19

Virtual machines in the 
cloud are an easy 

target for attackers!

If we could scan for attacks 
beneath the OS layer we 

could detect more attacks 
and provide security as a 

service!

Our system, CRIMES, 
demonstrates the 

feasibility of efficiently 
scanning at this layer
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Why this shape?

20

Problem Potential Solution

A)

B)

C)



Abstracts
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What is in an abstract?

22
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Recipe: Abstract
This is a mini version of an intro 
1. Set context 
2. Show a problem 
3. Review existing approaches 
4. Name a solution 
5. Hint at an evaluation 
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Let’s look at some
Best paper award abstracts from: 

- NIPS 2018 
- EMNLP 2018 
- OSDI 2018 
- INFOCOM 2018 
- Crypto 2018 

Does it follow our pattern? 
- 1. Set context 
- 2. Show a problem 
- 3. Review existing approaches 
- 4. Name a solution 
- 5. Hint at an evaluation  

How much space for each section?
24
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Abstracts
Content and style will vary by discipline! 

This is why it is important to read papers in the 
conferences/journals that you want to publish in! 

You must learn your community's norms and styles

25
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Recipe: Writing a Paper
Write a 2 paragraph abstract 

- High level brain dump of problem and goals 

Add titles for all sections and subsections 
Outline key sections 

- One bullet point per paragraph 

Sketch key figures 
- System design, algorithm flow 
- Predicted experimental results
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All the sections
Sections (your paper probably won’t include all) 

- Abstract - min sentences, max 2 paragraphs (200 words) 
- Intro - rest of first page, spills into second 
- Problem Statement / Background and Motivation 
- Approach / Design / System Model 
- Implementation 
- Experimental Design 
- Evaluation  
- Discussion 
- Related Work (at start or end) 
- Conclusions and Future Work 
- Acknowledgements 
- References 
- Appendix

27



Tips
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Don’t Stop
“It was a dark and stormy night…” 
Better to vomit out ideas and clean them up later 

- But try not to share a draft until after you have done cleanup

29



Tim Wood - The George Washington University - Department of Computer Science

Read
I’m a pretty good writer… 

- But I’m not sure why 

One fact: I read a lot 
- and read a lot more when I was younger 

Pick a book and read it!

30
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Book recommendations
Fiction 
• Brandon Sanderson

31

Non-Fiction 
• Bill Bryson, Steven Johnson 

• The Woman Who Smashed 
Codes - Fagone
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Book recommendations 2019
The Book of Why - Judea Pearl 
Psyched Up - McGinn 
Airport - ??? 
Media Control - Chomsky 
Getting Things Done - Alan
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Timing?
How many hours does it take to write a paper?
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It takes a lot of time!
I estimate I spend ~10 hours per page I write 

- Includes planning what to write, writing, revising, drawing 
diagrams, revising, rewriting, and rewriting a few more times 

To write equally well, you probably need more time 
than me 
Paper deadline in 2 weeks? 

- How much time to spend on experiments? 
- How much time to spend on writing? 
- Who can help with remaining tasks?

34
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Write, then read, then revise
Get used to rereading and revising everything 

- Emails, text messages, notes 

Set Gmail to delay sending 
- Gives you 10 seconds to fix a messed up email 

Figure out what common errors you make 
Try to  be a perfectionist 

- But don’t let this slow your flow of ideas 

Ask people to correct you 
- Grammar snobs are annoyingly great!
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Grammar Rules
Seven Deadly Sins of Writing 

- https://www.hamilton.edu/academics/centers/writing/seven-
sins-of-writing 

With a partner, give us a short presentation on your 
grammar sin 

- Don’t read from the sheet! 
- Give us some CS-themed examples 
- Tell us how these rules fit with CS technical writing

36

https://www.hamilton.edu/academics/centers/writing/seven-sins-of-writing
https://www.hamilton.edu/academics/centers/writing/seven-sins-of-writing

