NetKV: Scalable, Self-Managing,
Load Balancing as a Network Function

Wei Zhang and Timothy Wood
The George Washington University

Abstract—Distributed key-value systems (e.g., memcached) are
critical tools to cache popular content in memory, which avoids
complex and expensive database queries and file system accesses.
To efficiently use cache resources, balancing the load across a
cluster of cache servers is important. Current approaches place
a proxy at each client that can redirect requests across the cluster,
but this requires modification to each client and makes dynamic
replication of keys difficult. While a centralized proxy can be
used, this traditionally has not been scalable.

We design and implement NetKYV, a scalable, self-managing,
load balancer for memcached clusters. NetKV exploits recent
advances in Network Function Virtualization to provide efficient
packet processing in software, producing a high performance,
centralized proxy that can forward over 10.5 million requests
per second. NetKV efficiently and accurately detects hot keys
using stream-analytic techniques, then replicates them to meet
the allowed load imbalance bound set by administrators. NetKV
uses “balls and bins” load analysis to adaptively determine
the replication factor and set of hot keys. Our prototype adds
minimal latency to each request, and our algorithms effectively
balance load in both a 12 server cluster and a large-scale
simulation driven by a trace of wikipedia requests.

Index Terms—ILoad Balancing; Network Function Virtualiza-
tion; Key Value Stores; Scalability; Self Managing; Replication;
Balls and Bins.

I. INTRODUCTION

Key-value stores such as memcached have become critical
tools for scaling up web applications. By caching popular
content in an in-memory store, complex database queries and
file system accesses can be avoided. However, since objects
are cached in memory, a cluster of memcached servers must
be deployed for large scale web applications—Facebook is
reported to use more than 10,000 memcached servers [1].

Managing a distributed cluster of memcached servers is dif-
ficult since by their design, each memcached node is unaware
of others in the cluster [2]. Further, web workloads typically
exhibit highly skewed content request patterns, potentially
causing a small number of keys to see far greater popularity
than others [3]. Thus balancing the load across a cluster of
memcached nodes is both a difficult and important challenge
if server resources are to be used efficiently [4].

Existing approaches to memcached load balancing typically
rely on placing a proxy at each client (typically a web
application) so that requests can be load balanced across the
cache cluster. However, this requires modifications to each
client, and if there are many clients all accessing the cluster
then coordinating them to maintain a consistent mapping of
keys to cache servers can become difficult. Further, existing

Jinho Hwang
IBM T.J. Waston Research Center

systems simply use consistent hashing to decide how keys
should be distributed to servers, which will not evenly balance
load across servers if there is a skewed distribution of requests.
In this case, load can only be balanced by replicating hot
content across multiple servers, but determining which keys
should be replicated and where they should be placed is
especially difficult if there are multiple client proxies that must
coordinate to make these decisions.

Compounding all of these problems is the fact that a mem-
cached cluster management system must be highly scalable
and efficient. Redirecting requests must incur minimal latency
on top of a normal memcached lookup, or the benefit of
the in-memory cache will be lost. The massive number of
unique objects stored in a memcached cluster means that it is
infeasible to directly measure the popularity of all keys or to
maintain lookup tables for where they are stored. Since these
objects may be distributed across thousands of servers, it is
also impractical to use resource management algorithms that
require precise measurements of the load at each server.

To overcome these challenges, we present NetKV, a scal-
able, self-managing, load balancer for memcached clusters.
NetKV exploits recent advances in Network Function Vir-
tualization (NFV), which allows network services to be run
in software while retaining performance on par with hard-
ware implementations. NetKV can be transparently deployed
within the network as an NFV-based middlebox, where it
will automatically redirect requests to the appropriate servers.
To balance load under skewed workloads, NetKV efficiently
detects which keys are most popular using stream-analytic
techniques [5], [6]. It then replicates keys across the cluster in
order to probabilistically meet an administrator set bound on
the allowed level of imbalance. NetKV makes the following
contributions:

o A “balls and bins” based server load analysis that esti-
mates bounds for the imbalance found in a cluster facing
skewed workloads.

o A stream-analytics based hot key detection system that
efficiently determines the most popular content in the
cluster.

e A replication algorithm that uses the predicted load
imbalance to decide how many times to replicate the
detected hot keys, and which keys to store in a small
local cache.

e A ‘set’ request re-ordering system that improves the
consistency of writes to replicated keys with minimal

rmemcached
> servers

clients
(e.g., web
servers)

clients
(e.g., web |

servers)

memcached
servers

(b)

Fig. 1. (a) TwemProxy requires eight packet copies: 4 DMAs (light circles)
and 4 kernel-user space copies (dark circles), to redirect a request and reply.
(b) NetKV is built on an efficient NFV platform, eliminating packet processing
overheads and allowing a single centralized load balancer to manage a large
memcached cluster.

overhead.
o An efficient and scalable NFV-based load balancer pro-

totype that can forward requests at line rates of 10Gbps
or higher.

We have implemented NetKV using an NFV platform based
on Intel’s Data Plane Development Kit (DPDK) [7]. We
demonstrate the load balancer’s scalability up to 10.5 million
requests per second and evaluate the replication algorithm’s
performance on a cluster of twelve servers, where it improves
the throughput by approximately 20% compared to a static
replication algorithm. We also use a simulator to illustrate
how our load analysis and replication algorithms perform on
a large cluster facing a trace of requests from Wikipedia. For
extremely skewed loads, NetKV reduces load imbalance by
97% percent compared to a static replication algorithm.

II. BACKGROUND AND MOTIVATION

Scalability & Consistency: Key Value stores such as mem-
cached are simple independent caches, and require a separate
load balancing system if data is to be distributed or replicated
across a cluster. Load balancers for memcached must deter-
mine which keys to replicate and maintain a mapping of keys
to servers responsible for storing the values.

Current approaches to memcached load balancing place a
proxy at each client (e.g., each web server that will either
contact the cache or a database to retrieve content) to redirect
the requests across the cluster using an algorithm such as
consistent hashing [8], [9]. However, this requires modifica-
tions to the clients, plus it makes it very difficult to perform
dynamic cache management actions such as replication or
key remapping since all of the client proxies must be kept
consistent.

Deploying a centralized proxy that redirects requests across
the cluster eliminates the consistency problem, but with current
approaches is not scalable to large clusters. As Figure 1(a)
shows, TwemProxy, a memcached proxy from Twitter, can
incur eight packet copies for each request sent through the

~
o
1

_ No Replica ——
960 | 3Replica --3¢--
< 10 Replica —dM--
%50
=3
40
o
5
T30
Qo
E20
o
310
0

2 2.5 3 3.5
Zipf Workload Skew

Fig. 2. Skewed workloads cause load imbalance, even with some replication.

proxy, and all responses are mediated by the proxy, which
adds further overhead. As a result, centralized proxies have
not been practical when load balancing must be performed
based on application level packet data.

Self Managing: Consistent hashing has been widely used to
determine the key-server mapping for distributed data stores.
However, web applications often face skewed Zipf distribution
workloads [3], so servers hosting popular keys can quickly
become a hotspot. As figure 2 shows, the most loaded server
when using no replication is 78 times greater than the average
load when zipf skew is 3.5, but this can be improved by
replicating popular keys. Some systems such as Facebook’s
mcrouter [10] support static replication (i.e., maintaining N
replicas for a fixed set of keys) to spread the load of popular
content. However, dynamically determining which keys should
be replicated and how many times to replicate each one to both
balance load and minimize memory overhead remains a major
challenge.

NetKV Approach: We have designed a scalable memcached-
aware load balancer by exploiting recent advances in NFV
to provide efficient packet processing. As Figure 1(b) shows,
all requests to NetKV bypass the kernel, eliminating copies
and context switches. The system is further optimized to send
responses from memcached servers directly to clients, and by
using a small local cache to speed up requests for the most
popular content. This architecture allows NetKV to run as an
efficient, centralized load balancer transparently deployed into
the network.

NetKV targets large scale web applications with tens of
millions of keys and dynamic workloads, where it is critical
to efficiently detect hot keys and dynamically adjust their
replication factor. To ensure NetKV’s algorithms are both
accurate and efficient, we employ stream analytic tools to
detect hot keys and an automated “balls and bins” analysis that
guides the replication to meet the acceptable load imbalance
bounds set by administrators.

III. NETKV ARCHITECTURE

Here we describe NetKV’s core components which are
illustrated in Figure 3.
Dispatcher: The Dispatcher interfaces with the NFV platform
to efficiently read packets from the NIC and then determines
how they should be handled: from a local cache, by a repli-
cation server, or through standard consistent hashing. If the
request is for a key in the local cache, the dispatcher will

A A T
F ion Key Director O
Write Local Engine Replica o
inat Consistent
Coordinator Cache Toble onsiser)
A, . A - Aing”
2w 2. Key key| "f‘:zl'gf‘ key Og@ ()
38 23 Detector rename
£ gx
= o * Sampling *
Dispatcher Engine |
A

Fig. 3. NetKV Architecture

process the request and compose the response to send back to
the client. Otherwise it forwards the request packet to a real
memcached server.

Key Detector: The Key detector gathers statistics used by the
replication algorithm to decide which keys are hot or cold.
Since precisely tracking request rates for all keys would incur
excessive overhead we rely on approximate data structures and
sampling. During each measurement interval (e.g., 60 seconds)
the Key Detector produces a list of potential hot keys with
their estimated frequency, an approximation of the number of
unique keys, and an estimate of the total number of requests.
Replication Engine: The Replication engine is triggered at the
end of each measurement interval to determine which keys
should be replicated and how often. The analysis is performed
using the data gathered by the Key Detector, and the output is
a lookup table that can be queried by the Dispatcher to quickly
determine if a key is an unreplicated “cold key” or a “hot key”
stored either in the local cache or across several servers.
Write Coordinator: NetKV uses multiple dispatcher threads
to parallelize the forwarding of get requests, but doing
so for set requests could cause consistency issues if keys
are replicated. To prevent these problems, all requests that
write to replicated data are sent to the Write Coordinator,
which serializes the requests, similar to [11]. Since most
web workloads are predominantly read intensive (e.g., 98%
reads in Facebook [3]), this serialization incurs relatively little
overhead while improving consistency.

Local Cache: NetKV maintains a Local Cache on the load
balancer to quickly handle requests for keys which are popular
and also frequently updated. Since this cache is explicitly
managed with a single writer and multiple reader threads,
and interacts directly with the NFV platform to send packets,
it can achieve throughputs orders of magnitude greater than
memcached (albeit with far less cache space than a full
cluster).

IV. REPLICATING HOT DATA

NetKV faces two challenges in order to balance load across
the cluster’s servers: 1) it must decide which keys are the most
popular, and 2) it must determine how many times to replicate
each of those keys in order to balance load without incurring
undue memory overhead.

The novelty of our approach is to take a skewed key
distribution and replicate the popular keys enough times so
that their workload will appear uniformly distributed; we then

can use a “balls and bins” style analysis to estimate the
maximum load that will be incurred on any server under such
a replication pattern. This then allows NetKV to automatically
adapt the replication parameters to meet a target load-all
while leveraging stream approximation techniques to ensure
the analysis can be performed in a timely fashion.

A. Popularity Detection

NetKV’s Key Detector first must separate popular keys from
less frequently accessed ones. Efficiently determining the ‘top-
k’ elements in a data stream (i.e., the k£ most popular keys) is
an open challenge in streaming analytics [5]. We use the Lossy
Counter [6] data structure to efficiently determine which are
the most popular keys. A Lossy Counter uses a window to
record recently observed keys and periodically removes the
low count keys and keeps the most-frequently accessed ones.

The Lossy Counter returns a list of key/frequency pairs,
(ki, fi), from most to least popular. The number of keys
tracked and accuracy of the counts depends on the support
threshold s and error rate e, which control the window size.
The Lossy counter guarantees that all keys with frequency at
least s x N will be returned. Any key with frequency less than
(s—e€) x N will not be returned. N is the stream length. We set
these parameters conservatively so that the counter will track
more keys than NetKV will choose to replicate. If during a
measurement interval NetKV determines that all keys in the
counter must be replicated, then it will automatically adjust €
to get a larger window size to ensure that in the subsequent
measurement interval the counter will track a larger number
of keys.

In addition to tracking the frequency of popular keys, the
Key Detector also uses a HyperLoglog counter to estimate
the total number of unique keys. HyperLogl.og counters are
extremely efficient cardinality estimators [12]. By inserting
each sampled key into the HyperLoglog counter, NetKV can
track the total unique keys, K, which in turn lets it estimate
the ratio of hot and cold keys as described below. The Detector
also uses a per-thread request counter and the sampling rate
to estimate the total number of requests, F.

While the Lossy and HyperLoglog data structures are
efficient both in space and time complexity, it still can be
expensive to add every key into the counters when processing
millions of keys per second. To reduce this cost, we use
sampling to only send a fraction of the incoming keys to the
Key Detector. While this may make NetKV underestimate the
number of unique cold keys, it does not have a significant
impact on the estimated hot key load distribution. The missed
cold keys will be treated as a single “virtual cold key”, which
causes NetKV’s estimate to be higher than the actual load.
Since we seek to find an upper bound on the load, this is not
a problem.

B. Hot Key Replication

Given the list of key/frequency pairs, (k;, f;), from the
Lossy Counter, NetKV decides which keys to replicate by

Access Frequency

0.1

% of all Requests

0.01 Il Il |
1 10 100 500
Key ID
Fig. 4. Access frequency distribution of wikipedia trace

exploiting the shape of skewed probability distributions typ-
ically found in web workloads. Figure 4 shows the number
of requests made to the most popular URLs (i.e., keys) in
a trace of 30 million requests from Wikipedia. As expected,
this shows a highly skewed distribution; the top 25 keys make
up 22% of the entire trace, and 3.2 million keys are never
accessed more than ten times. Thus only a small fraction of
the total keys will need to be replicated.

NetKV uses a replication threshold, 7', to determine what
keys to replicate. Any key with estimated frequency f; > T is
considered a hot key that will be replicated by the algorithm.
The replication factor of each key is set to r = ceil(f;/T). It
should be noted that this approach permits a key to have more
replicas than there are servers in the cluster (if 7" is set low or
the frequency of some key is very high). However, each key
will only be stored in memory at most once per server, and
we simply use the large number of “virtual replicas” to evenly
distribute the requests across servers.

Adjusting T' determines both the number of keys that will
be replicated and their replication factor, thus it has a large
impact on how evenly balanced the servers will be. Rather than
require administrators to set 7' manually, NetK'V automatically
calculates T" based on the acceptable level of load imbalance
in the cluster, as described below.

C. Replica Distribution

Once hot keys have been selected, NetKV must determine
where to place the replicas. In our original prototype, we
used a lookup table that tracked each hot key, its replication
factor, and the server it was assigned to. However, intelligently
deciding which servers to place replicas on requires significant
information on the current load of each server, as well as an
understanding of how much of that load comes from hot or
cold keys. Optimally solving this reduces to the bin packing
problem, which becomes intractable for large numbers of keys
and servers.

To avoid this complexity, NetKV uses randomization to
evenly distribute hot key replicas across the cluster. To repli-
cate hot key, k;, NetKV must select r = ceil(f;/T) servers.
The first server is selected by doing a consistent hash ring
lookup for the renamed key “k;-replica-1"; the second server
by looking up “k;-replica-2”, and so on. This allows NetKV
to produce r different “virtual key names” for k;, which are
evenly distributed around the consistent hash ring. When the
replication factor for a key is changed or a new set for
a replicated key arrives, NetKV will issue requests to all r

servers to insert the key and value. Note that the virtual key
name is used only to select the appropriate server—the original
key name is still used in the actual request.

While this does not prevent several hot keys from being sent
to the same server, in practice when there are a reasonable
number of virtual hot keys and servers, we find that the
load is evenly distributed. This is achieved with far less
communication, storage overhead, and lookup cost compared
to an approach that individually tracks server loads and does
bin packing to optimally place keys.

D. Load Estimation

The above algorithms assume a predefined replication
threshold, 7"; we now discuss how NetKV automatically adapts
T based on the predicted level of load imbalance derived using
a balls and bins analysis [13]. This allows NetKV to estimate
the maximum load a server in the cluster will experience for
a proposed 7' value.

We consider the memcached servers as a set of n bins,
and the unique keys being requested as a set of m balls that
must be assigned to them. Intuitively, if we use consistent
hashing to randomly distribute all the balls across the bins,
the average balls per bin will be 7, but it is likely that some
bins will have more balls than that. The analysis originally by
Mitzenmacher lets us estimate with high probability the most
balls (i.e., unique keys) that will be assigned to any one bin
(server). Mitzenmacher’s results for the case where m = n
have since been extended to give a set of equations that can
be used depending on the relationship between the number of
balls and bins [13], [14]:

MaxBalls(m,n) =

logn

log
logn

lo nlogn

n
logn

m<

(1+alog(2) nl:)fn) n

lo % : log(n)

:m > nlogn

<m < nlogn

=+ 3\/2%logn
(D

This allows us to calculate the unique keys assigned to each
server, but since all keys may have different request rates
(particularly in a skewed web distribution), it is difficult to
estimate the actual load that a server will see.

To solve this problem, we take advantage of NetKV’s
replication algorithm that will replicate keys kj...kp, with
frequency f; greater than T each f;/T times. Thus key
renaming in effect transforms the original h hot keys into a
set of h* “virtual hot keys” each with frequency 1"

oy @)
i=1 r

Thus A* can be used as the number of balls being assigned
to the bins. Since each virtual hot key will have a maximum
frequency of 7', we can estimate the maximum load caused
by the replicated hot keys as:

MaxHotLoad = MaxBalls(h*,n) x T 3)

—4— Ppredicted

3.5 | --3¢-- Observed

Imbalance(max/avg)
N

0 20 40 60 80 100 120 140 160
Threshold(1K)

Fig. 5. Load imbalance versus threshold

Note that since there typically are relatively few hot keys, one
of the first two ball and bin analysis equations will generally
be used.

Next we must estimate the load incurred by the cold keys.
While the lossy counter provides frequency information for
all of the hot keys (and some of the cold ones), we do not
know exact frequencies of all keys, nor the exact total number
of unique keys. However, we do know the total number of
requests, I, and an estimate of the number of unique keys, K
measured by the Hot Key Detector’s counters. Thus we know
that the ¢ = K — h cold keys have a total request frequency:

h
Fo=F=> [)
i=1

While some cold keys are more popular than others, typi-
cally ¢ >> n, meaning that there is a very large number of
cold keys assigned to each server. As a result, each server is
likely to get a relatively even mix of popular and unpopular
cold keys. Thus we estimate the maximum load caused by the
cold keys as:

F
MazColdLoad = MaxBalls(c,n) x < 5)
c

Finally, we can conservatively estimate the maximum load on
any server as the sum MaxColdLoad + MaxH otLoad.

To evaluate the accuracy of our analysis, we estimate the
load imbalance (i.e., maxLoad/avgLoad) for the 28 million
requests in the wikipedia trace when varying the replication
threshold 7' and then compare it to the observed imbalance
when running the trace through our NetKV simulation plat-
form. The results in Figure 5 show that our estimates track the
simulated values relatively closely. As expected, our estimate
is consistently higher than the observed imbalance, since it is
based on the ball and bin analysis that gives an upper bound.

E. Adaptive Replication

At the end of every measurement interval, NetKV uses
the information from the Hot Key Detector to calculate the
expected load imbalance with the current value of 7'. If due
to recent workload changes the predicted value exceeds an
administrator set bound (e.g., the most loaded server should
see at most 50% more requests than average), NetKV will
automatically search for a new 7' value that will produce a
sufficiently balanced allocation. By doing a parameter sweep
through possible 7" values, the proceeding analysis can be used

to find a replication threshold that will meet the administrator
specified load imbalance.

F. Handling Replicated Writes

NetKV offers two approaches for providing consistent up-

dates to hot keys.
Write Ordering: Naively replicating keys and forwarding
requests to them can easily cause consistency issues. For
example, two dispatcher threads might receive write requests
for the same key, but with different value content. If these
two requests are forwarded to the replication servers in an
interleaved order, the replica servers will see inconsistent
content for the same key.

To reduce the likelihood of such conflicts, NetKV delegates

all hot key writes to a single thread.! This thread then
processes each write sequentially, forwarding the write to all
replicated servers.
Local Cache: Often, very hot content is read frequently but not
written to. As a result, there may only be a small number of
keys which are both read and written to frequently enough to
require replication. The write rate for these keys may exceed
the capacity of a single server, so NetKV can use its fast local
cache to store them. When a hot key receives a set request,
NetKV updates the replication table to instead direct requests
to its local cache. This cache is capable of serving millions of
requests per second, far beyond the rate of a normal server, and
since the key is not replicated there are no ordering concerns.
Any additional space in the local cache can be used for hot
read-only keys.

G. From Hot to Cold

Memory is an expensive and limited resource on both the
NetKV proxy and memcached servers. NetKV has to evict
items to free space for new hot keys when its local cache
is full, and remove the unnecessary replicas throughout the
cluster when hot keys become cold.

Once its cache is full, a memcached server uses the LRU
(Least Recently Used) eviction policy, which may cause it to
automatically evict a replica of a formerly-hot key. Rather than
relying on this indirect form of eviction, NetKV tracks which
keys change from hot to cold between each measurement
interval. It stores two hot replication key tables: one for the
previous interval and one for the current. If a key only showed
up in the previous replication table, or if its replication factor
decreases, the NetKV writer thread will send a delete request
to the local cache or replicated servers to free space. Since
NetKV uses consistent hashing to determine where a key is
replicated, adjusting the number of replicas does not require
any data movement, just invalidation requests.

While LRU is effective for tracking key popularity, it is quite
expensive. NetKV uses a lighter weight LFU (Least Frequently
Used) policy to evict items from its local cache when there
is insufficient space. This keeps the local cache as simple as
possible, improving its maximum throughput.

UIf the hot key write rate exceeds the capacity of one thread, then the key
space can be partitioned with one thread handling each partition.

V. NETKV IMPLEMENTATIONS

NFV Prototype: We have implemented our prototype on top
of DPDK 1.4.1, a library that allows direct access to packet
data from user space applications for efficient I/O. Bypassing
the kernel reduces many overheads, but also means our load
balancer cannot use the kernel’s TCP stack. While memcached
supports TCP and UDP, many large-scale memcached deploy-
ments such as Facebook’s rely on UDP for all get requests
to reduce overheads [1]. Currently NetKV only supports UDP
requests, but could incorporate a user space TCP stack such
as MTCP if desired [15].

Our prototype runs a configurable number of dispatcher
threads that handle incoming packets. Traffic from the NIC
is evenly distributed across dispatcher threads using RSS
(receive-side scaling) to manage the mapping between RX
queues and dispatcher threads by hashing the packet header 5-
tuple. NetKV also runs a key detector thread that implements
the lossy counter, a replication thread that runs the replication
algorithm, and a writer thread that serializes set requests. The
writer thread can also be used to evict former hot key replicas
and to setup new key replicas when needed. Communication
between all threads is achieved with lockless message buffers
to prevent synchronization overheads.

Trace-Driven Simulator: We also implement our algorithms in
a Java-based simulator so we can evaluate their performance at
larger scale. The simulator can either generate a set of requests
following a Zipf distribution or it can take a trace of requests.
We use a trace of 28 million URL requests to the popular
wikipedia website; while these are not identical to memcached
requests we expect that they will follow a similar distribution.

VI. EVALUATION

Our goals for the evaluation are to see the overheads
and scalability of our NetKV prototype, the performance
improvement in real and simulated environments, and the hot
key detection accuracy.

A. Environmental Setup

In our experimental setup, we use 12 servers with dual
Xeon X5650 @ 2.67GHz CPUs (2x6 cores), 384KB of L1
cache, 1536KB of L2 cache per core, and a shared 12MB
L3 cache. Each server has an Intel 82599EB 10G Dual Port
NIC (with only one port used for our experiments) and 48GB
memory. We deploy the NetKV load balancer on one server,
memcached servers run on eight servers f(each is deployed
with only one worker thread), and the remaining servers act
as clients. Servers run Ubuntu 14.04 and Memcached 1.4.22.

We use the Facebook mcblaster benchmark as the mem-
cached client in our experiments to measure latency. We use
UDP requests in all cases except when running TwemProxy
because it only supports TCP. We have found that memcached
requests over TCP and UDP have similar latency at low and
moderate load. Since the maximum request rate of mcblaster
is less than the throughput NetKV can support, we modify
Pktgen-DPDK 2.7.7 (a high speed packet generator) to support
memcached’s ASCII protocol. The generator creates different

1 Il : ﬁ' ahx. o A
R
R4
0.8 - R4
A 5
[
w 0.6 - /’ 4 NetKV-Cache
o g NetkV-Cold = -
o /2 NetKV-Hot ««<X««
04l Sy Direct-UDP =78 -
. /. TwemPorxy-TCP
157
0.2 + /';;'7
N/ L
0 100 200 300 400 500 600

RTT (usec)
Fig. 6. Get Requests CDF for RTT

skewed workloads according to Zipfian access pattern with
different Zipf parameters.

B. NFV Load Balancer Overhead

Latency: Memcached is often used in web applications to
cache the result of expensive database queries, so load balancer
should perform the requests as quickly as possible. Thus the
overhead of the load balancer becomes very important. We
compare four approaches to forwarding requests: “NetKV-
Cold” and “NetKV-Hot” respectively represent requests to
NetKV that only need a consistent hash lookup or also require
a replication table lookup to perform virtual key renaming.
The “NetKV-Cache” case is for a local cache hit within the
NetKV load balancer. “TwemProxy-TCP” uses TwemProxy
from Twitter as the load balancer, and “Direct-UDP” is a
baseline where the client issues UDP requests directly to the
memcached server.

Figure 6 shows the cumulative distribution function (CDF)
of the request latency under light load. We can see that NetK'V-
hot and NetKV-cold have very similar latency to directly
contacting a memcached server (a 20 us average difference),
which means that our replication selection module for hot
keys and consistent hashing module for normal keys have
little overhead. This illustrates the benefit of building NetKV
on a high performance NFV platform that minimizes packet
processing costs.

When NetKV has a cache hit, we further speed up the
response time, reducing the average latency to 21 us. In
contrast to NetKV, TwemProxy has much higher overhead
(average latency 315 us). This is because it uses interrupt
driven packet processing, has memory copies and context
switch between user space and kernel space, and TwemProxy
must mediate all responses returned to the client.

Throughput: We next measure the maximum throughput?
achieved by NetKV (without a local cache) and TwemProxy
when adjusting the size of keys in requests and values in re-
sponses. Adjusting the key size has no impact on TwemProxy,
since its bottlenecks are not related to the packet size, and it
has a maximum throughput of 90,000 requests per second. As
shown in Table I, the performance of NetKV varies based on
the key size. For all but the smallest key size, NetKV is limited

>To determine the maximum possible forwarding rate of NetKV we use
PktGen to send memcached traffic. The load balancer then returns each packet
directly back to PktGen after performing the necessary lookups to determine
how the request would be forwarded. This approach is necessary since we do
not have enough memcached servers in our cluster to handle the maximum
rate of NetKV. We find the maximum throughput with less than 1% drop rate.

| Max Tput (Regs/sec)

TwemProxy (<196 byte key) 90,000
NetKV (4 byte key) 10,474,702
NetKV (78 byte key) 6,019,425

NetKV (196 byte key) 4,698,778

TABLE I
MAX THROUGHPUT OF DIFFERENT KEY SIZES

2500
—4— TwemProxy

------ NetkV
2000 | X

RTT (usec)
—
w
o
o

- 1000

Avg
w
o
S

6
Value Size(1KB)
Fig. 7. Packet size vs Average RTT

by the 10Gbps line rate, not the packet processing overheads.
For 4 byte keys, NetKV achieves 115 times greater throughput
than TwemProxy, demonstrating the benefits of using polling
and zero-copy I/O in the NFV platform.

NetKV is designed so that responses from the server are
sent directly to the client, avoiding the load balancer, so its
performance is independent of the value size. In contrast,
TwemProxy acts as an intermediary for all requests, and incurs
expensive memory copies of all packet data. Figure 7 shows
the average response time with value sizes from 32 bytes
to 11KB. This clearly shows that TwemProxy brings greater
overhead because of its need to copy response data from the
server socket to the client socket. When the value size is 11KB,
it quickly goes up to 2151 us. As expected, NetKV is not
affected by the value size, since all responses directly return
to the clients from the memcached servers.

Scalability: Finally, we investigate how NetKV’s performance
changes as we adjust the number of Dispatcher threads, each of
which is dedicated a CPU core. Figure 8 shows the throughput
for different types of requests when using 31 byte keys
(which Facebook reports is the size for over 90% of their
application’s keys [16]). The “Forwarding” line illustrates the
baseline throughput achieved by a simple packet forwarder
NF that only performs address rewriting, but does not do the
hot key detection, consistent hash table lookups, etc. required
by NetKV. On our platform, it takes two threads running the
forwarding function to meet the 10Gbps line rate.

The “NetKV” line shows the maximum load balancer
throughput when all requests are for cold keys (performance
is similar for hot keys). In this case, three threads are almost
sufficient to meet the line rate. NetKV incurs the greatest cost
when it must produce a response for each request from its
local cache. Then it can take up to five threads, as shown
by the “NetKV-Cache” lines; returning 500 byte value sizes
is slightly more expensive than 32 byte values since the data
must be copied into the packet sent back to the client.

C. NFV Load Balancing Performance

We now demonstrate NetKV’s load balancing potential
when deployed in front of a cluster of twelve servers. We

U o N ©

w
T

NetKV-Cache-500

Throughput (1M regs/sec)
Ny
T

2r NetKV-Cache-32 —x
1k NetKV --3¢--
Forwarding —#--
0 L L L N)
0 1 2 3 4 5
Num of Dispatcher Threads
Fig. 8. Througput vs. Number of Threads
500
| No Replica ?
450 3 Replica = (=)~
400 | NetkV --3&--
§350 o _ O, ---
3300 o -
E2s0 | o
= 200 |- T
[U, ¥ CPPPPPPPPPPPPP ¥ CCLE T e TP PP LT
z150 | Sereeee X 348 X
100 |
50
0 1 1 1 1 1]
0.25 0.3 0.35 0.4 0.45 0.5 0.55

Request Rate(1M regs/sec)
Fig. 9. Average round trip time of the most loaded server versus request rate

compare the performance with no replication, a simple triple
replication system that triplicates all keys tracked by the
Lossy Counter, and the full NetKV replication system. We
use PktGen to drive varying levels of load against the cluster;
however, since it can only measure throughput, we also run
one mcblaster client for each server to gather response time
and drop rate information.

Figure 9 and Figure 10 respectively show the latency and
packet drop rate of the most loaded server under zipfan skew
3.0 workload. Without any replication, latency quickly rises
to 458us. The load across the servers has very large variance:
the load of the most loaded server is 77.82 times greater than
the least loaded server and 3.36 times the average load. Even
with three replicas of all potential hot objects, the latency still
rises, although the more even load distribution prevents an
excessive drop rate. NetKV adaptively adjusts the number of
replicas based on the workload volume, and thus maintains a
smaller latency and avoids packet drops, which make the load
evenly distributed. The load of most loaded server compared
to the least loaded server and the average load respectively
drop to 1.10 times and 1.05 times.

We next compare the throughput with zipf skewed work-
loads in Figure 11. Without replication, the maximum through-
put is quite limited, since a few servers quickly become over-
loaded, while others remain idle. Triple replication reduces this
problem, but NetKV’s adaptive replication algorithm improves
the throughput by approximately 20% and maintains a steady
throughput even for extremely skewed loads.

D. Impact of Replication Parameters

The replication threshold 7' determines the number of keys
picked to replicate and the number of replications, which both
affect the load balance. Here we explore the impact of different
settings, and why it is important for NetKV to dynamically
adapt T' to meet the target load imbalance level.

| No Replica ?
45 3 Replica = (=)~

NetkV --3&--

0.25 0.3 0.35 0.4 0.45 0.5
Request Rate(1M reqgs/sec)

Packet Drop Percentage of the most loaded server versus request

0.55

Fig. 10.
rate

)
Q
[}
= e
: o Replica —i_
§0l6 | 3 Replica
: NetkV --H¢--
04— —. .)
E TS
: — .
1 Ve
0 | L ' I I I
2 - : = . 45 5

Zipf Workl.oad Skew
Fig. 11. Maximum Throughput versus different skewed workload

We use our simulation platform with a trace of requests from
Wikipedia and 100 servers. Figure 12 shows the number of
replicas NetKV makes for the hot keys when 7 is statically set
to 25,000 or 100,000. As expected, using a smaller threshold
results in each of the hot keys being replicated more times,
but it also causes substantially more keys to be picked for
replication (141 versus 25).

Facebook’s approach to memcached load balancing relies on
a fixed replication level for each pool of keys [1]. However,
the skewed popularity seen by web workloads makes a static
setting inefficient. Figure 13 shows the total key replicas of the
detected hot keys when the threshold is used to determine the
set of hot keys and then there is either a fixed replication level
per key or NetKV’s automatic replication level. ReplicalO-
T25k has 1,310 replications which is 2.5 times larger than
NetKV with the same threshold. This wastes memory, since
more keys are replicated, but provides minimal improvement
to the server load. On the other hand, with 7" = 100K, the
fixed replication system uses more memory for replication than
NetKYV, but neither approach replicates the hottest keys enough
times.

The impact of replication factor and threshold on the level
of load imbalance is further shown in Figure 14. If there is
not any replication, the load on the most loaded server is
5 times larger than the least loaded server. Replical(0-T25k
partly alleviates the hot spot and drops the imbalance to a
factor of 3 times. However, the load imbalance of NetKV-T25k
is even better, since it replicates a few of the most popular
keys as many as twenty times. By intelligently selecting which
keys to replicate based on their estimated frequency, NetKV
reduces the replication memory cost by 2.53 times, while
simultaneously providing a substantial improvement in load
balance.

When the threshold is set to 100K, neither fixed replication
nor NetKV perform that well because the hotest keys are not

NetKV-T100k ——

20
1
. NetKV-T25k = = =

-
v
L

Num of Replicas
=
o
T
rl

(S
V’rj
!
!
P
-

0 20 40 60 80 100 120 140
Key ID

Fig. 12. Number of replicas versus Key ID

1400 T T T T

i
N
o
[S)

1000

800

600

400

Total Number of Replicas

200

NetKV-T25k
Fig. 13. Total number of replications for different cases

Replical0-T25k NetKV-T100k Replical0-T100k

replicated enough times. This shows the danger of setting fixed
thresholds or replication factors—unless these parameters are
carefully set, memory can be wasted for unneeded replicas,
or insufficient keys may be replicated to keep the load evenly
balanced.

E. Adaptive Replication Threshold

We now explore NetKV’s ability to dynamically set the
replication factors to keep the cluster balanced, despite skewed
workloads. We first test a synthetic workload where we vary
the Zipf skew parameter with a cluster with 100 servers.
We use the imbalance factor Eq. 6 to compare the level of
imbalance between servers.

(6)

i | Rate; — AvgRate]
~ AvgRate xn

Where Rate; is the request rate on server, ¢ and AvgRate
is the average requests across all servers.

Figure 15 shows that as expected, the imbalance factor
quickly rises with no replication. While fixed levels of repli-
cation reduce the variation, it is difficult to know in advance
how to set the replication factor, and even replicating all keys
10 times does not prevent imbalance as the workload skew
rises. NetKV maintains a small and stable imbalance factor
by automatically adjusting the replication threshold based on
the observed workload skew.

Figure 16 lists the load of each server. It is clear that with
10 replications (10 Replica line), the variance of server load
is very large. The most loaded server has 216 times load than
the least loaded server. While in our “NetKV”, each server
has similar load.

The imbalance between the most and least loaded servers
in a cluster also tends to rise as the number of servers is
increased. Thus horizontally scaling a cluster can sometimes
lead to worse tail latency values since the average latency is
improved more than the maximum. To explore how NetKV can

0.8 -
Replical0-25k
% 07 [Replical0-100k - - - /
996k NetkV-25K ------+ /
c NetKV-100k —-—- K
205 | No Replica — - — o
Eo4 e
el
©
303
go2
8o1f
0 .) . . .

’ 0 40 60 80 100

Server ID
Fig. 14. Server load distribution for wiki workload

1.8

1.6 [
5 1.4
T 1.2 |
©
w
8 Lr X A - No Replica ——
5 08 F _-- 3 Replica --H¢--
® 06 - 10 Replica =M~
e Sy 4 Netkv
= 04 —>< 7

”
0.2 i
O 1
1 1.5 2.5 3 3.5

2
Zipf Workload Skew
Fig. 15. The average variance of all servers’ request rate relative to the
average request rate with different skewed workloads

assist with this problem we use our simulator and wikipedia
trace and vary the number of servers from 50 to 2,500 to
measure the load imbalance (i.e., maximum server request rate
divided by average request rate).

Figure 17 shows that if there is no any replication, adding
more servers does not alleviate the hot spot since one server
still receives each hot key. When using NetKV with a fixed
threshold of 7' = 25,000, the load imbalance is initially
acceptable, but becomes worse as the number of servers
rise. This happens because the average request rate drops
linearly with more servers, but when the replication factor is
not adjusted, the extra requests caused by hot keys are not
rebalanced.

When NetKV’s adaptive threshold feature is used, the
system automatically retunes the replication factor to meet
the acceptable imbalance level. We illustrate target imbalance
levels of 1.7 and 3.2 in Figure 17. By utilizing the balls and
bins analysis, NetKV can automatically predict how adjusting
the number of servers (bins) affects the difference between
the most and average loaded servers. NetKV maintains a load
imbalance within 16% of the target in all cases.

F. Hot Key Detector Sampling Accuracy

Finally, we evaluate the impact of sampling on the Hot Key
Detector’s accuracy. Figure 18 shows that sampling rates up
to 1 in 1000 have minimal impact on the accuracy of the hot
key detector—the estimated frequency of each hot key remains
very similar to the real trace data. As a result, we set 1000 as
the sampling rate in all our experiments.

VII. RELATED WORK
NFV: Network Function Virtualization facilitates the deploy-

ment of network services by running them as software on
virtual machines. In recent years, there have been several
projects to increase packet performance on commodity servers.
Netmap [17] bypasses network stack layer overheads by

5
| 10 Replica =———
w45 NetKV ---e---
o 4L
e
c 35
S
S 3t
Eas}
e
8 21
g}
E’ 15
2 1}
[
0 g5 [,_.’-—4'“’—---‘-—“’~'
0 T))))
0 20 40 60 80 100
Server ID
Fig. 16. Server Load under Skewed Workoad
100
No Replica
= (=)~ NetKV fixed T25k
5 --9&-- NetKV-adaptive 1.7
3 —A-- NetKv-adaptive 3.2
8
£
g -
: -o--""9
]
©
o
LS VN VDAL S Wy W —-—-—- -A

1000 1500
Number of servers

Fig. 17. Load imbalance versus the number of servers

2000

directly mapping packets from kernel space to user space.
Similarly, the Intel DPDK [18] library uses zero-copy packet
I/O and a polling-based driver to allow applications to do line
rate packet processing. NetKV leverages DPDK for fast access
to raw packets, and then provides the network and application-
layer processing needed to interpret and forward memcached
requests.

In-Memory Key-Value Stores: In standard memcached, the data
structures and fine-grained mutex restrict the performance.
There are a bunch of work to optimize and improve it.
MemC3 [19] uses efficient concurrent cuckoo hashing and
CLOCK cache replacement to improve the memcached per-
formance. However, it still suffers from the fine-grained mutex
overhead. [20] and [21] pipeline or parallelize request parse,
hash calculation, value store access and response formatter to
improve the performance depending on FPGA. MICA [22]
bypasses OS, which uses high-speed key-value data structures
to enable parallel data access, then get good performance. [23]
further optimizes MICA’s certain inefficiencies to have higher
performance. These approaches all focus on maximizing the
performance of a single cache node and can be deployed as
in-memory key-value servers in our environment. Our work is
orthogonal to these work, focusing on managing large scale
in-memory key-value cluster.

Load Balancing: Load balancing in clustered key-value stores
such as FAWN [8] rely on consistent hashing to redirect the
requests across nodes. [24] proposes an adaptive hash space
partitioning approach that can dynamically shift hash space
boundary across servers to keep them more evenly loaded,
although the requests for a popular key still only go to one
server. However, as [16] and [3] show, highly skewed work-
loads are often seen, which can cause individual servers to
become hot spots. Facebook [1] has deployed a pre-configured
key replication system to help balance the load. The individual
client needs to coordinate the mapping of replicated keys to
servers, which reduces the agility of the system compared to an

~
1

Real Access
61 Sample 1000 = = =
Sample 4000 «======

5 L
@
84
v}
<
B3
R

2+

1 el

------- ssssssienITTLy

0 1 h BT ,

0 5 10 15 20

Key IDs
Fig. 18. Sample Accuracy

in-network load balancer like we propose. Hong et al. propose
a memcached load balancing system that uses key replication
and renaming similar to ours [25]. However, their approach
relies on a negotiation protocol between the clients and servers
to be aware of the mapping of hot keys and servers, and it
does not provide guidelines on how many times they should be
replicated. In [26], each key-value server is not standalone and
maintains the state of the replicated keys. In NetKV, we seek to
both build a scalable memcached load balancing system and
provide a complete replication algorithm that determines to
replicate keys while maintaining a target level of load balance.

Ball and bin based load analysis [13], [14] has been applied
in a range of areas including distributed hash tables [27],
[28] and relay allocation [29]. We combine these algorithmic
results, recent stream analytic data structures, and advances
in NFV software to build a complete solution that efficiently
detects workload characteristics and uses that information to
guide replication in an actual prototype.

VIII. CONCLUSIONS

We have presented a scalable and self-managing load
balancer, NetKV. Our approach is based on 1) exploiting
recent advances in software-based NFV for efficient packet
processing, 2) stream approximation techniques that scalably
measure workload characteristics, and 3) balls and bins based
load analysis that drives an adaptive replication algorithm.
Together, these allow NetKV to efficiently and accurately load
balance over 10 million memcached requests per second, while
keeping server load levels within an administrator specified
bound. NetKV is further optimized with a local cache that
can be used for extremely hot data or to eliminate write
consistency issues. We have evaluated NetKV both in sim-
ulation and as an NFV prototype. Our experimental results
show that NetKV adds minimal latency to each request and
linearly scales up to line rates of 10 Gbps. NetKV’s replication
algorithm effectively balances the load, keeping server load
imbalance bounded even under highly skewed workloads.

Acknowledgements: This work was supported in part by
NSF grants CNS-1253575 and CNS-1422362.

REFERENCES

[1] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani.
Scaling memcache at facebook. In Proc. NSDI, 2013.

[2] Wei Zhang, Timothy Wood, K.K. Ramakrishnan, and Jinho Hwang.
Smartswitch: Blurring the line between network infrastructure & cloud
applications. In HorCloud, Philadelphia, PA, June 2014.

[3

[4

=

[5

=

[6

=

[7

[8]
[9]
[10]

(11]

[12

[13]

[14]

[15]

[16]

(171

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Char-
acterizing facebook’s memcached workload. IEEE Internet Computing,
2014.

Wei Zhang, Jinho Hwang, Timothy Wood, K.K. Ramakrishnan, and
Howie Huang. Load balancing of heterogeneous workloads in mem-
cached clusters. In Feedback Computing, Philadelphia, PA, June 2014.
Graham Cormode and S. Muthukrishnan. What’s hot and what’s not:
Tracking most frequent items dynamically. ACM Trans. Database Syst.,
30(1):249-278, March 2005.

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency
counts over data streams. In Proc. VLDB, 2002.

Intel Corporation. Intel data plane development kit: Getting started
guide. 2013.

David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-
ishayee, Lawrence Tan, and Vijay Vasudevan. Fawn: A fast array of
wimpy nodes. In SOSP, 2009.

Twemproxy: A fast, light-weight proxy for memcached, February 2012.
https://blog.twitter.com/2012/twemproxy.

Memcached Router. https://github.com/facebook/mcrouter, 2014.

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and
Arvind Krishnamurthy. Designing distributed systems using approximate
synchrony in data center networks. In Proc. NSDI, 2015.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier.
Hyperloglog: the analysis of a near-optimal cardinality estimation algo-
rithm. DMTCS Proceedings, (1), 2008.

Michael Mitzenmacher. The power of two choices in randomized load
balancing. Parallel and Distributed Systems, 2001.

Martin Raab and Angelika Steger. balls into binsa simple and tight
analysis. In Randomization and Approximation Techniques in Computer
Science, pages 159-170. Springer, 1998.

EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Thm, Dongsu Han, and KyoungSoo Park. mtcp: a highly
scalable user-level tcp stack for multicore systems. In Proc. NSDI, 2014.
Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In Proc.
SIGMETRICS. ACM, 2012.

Luigi Rizzo. netmap: A novel framework for fast packet I/O. In Proc.
ATC, 2012.

Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. Netvm: High
performance and flexible networking using virtualization on commodity
platforms. In In Proc. NSDI, April 2014.

Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: compact
and concurrent memcache with dumber caching and smarter hashing. In
Proc. 10th USENIX NSDI, 2013.

Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan,
and Thomas F. Wenisch. Thin servers with smart pipes: Designing soc
accelerators for memcached. In In Proc. 40th ISCA, 2013.

Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Bér, and
Zsolt Istvan. Achieving 10Gbps line-rate key-value stores with FPGAs.
In HotCloud, 2013.

Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. Mica: A holistic approach to fast in-memory key-value storage. In
Proc. NSDI, 2014.

Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj Kalia,
Michael Kaminsky, David G. Andersen, O. Seongil, Sukhan Lee, and
Pradeep Dubey. Architecting to achieve a billion requests per second
throughput on a single key-value store server platform. ISCA, 2015.
Jinho Hwang and Timothy Wood. Adaptive performance-aware dis-
tributed memory caching. In Proc. ICAC, 2013.

Yu-Ju Hong and Mithuna Thottethodi. Understanding and mitigating the
impact of load imbalance in the memory caching tier. In Proceedings
of the 4th Annual Symposium on Cloud Computing, 2013.

Yue Cheng, Aayush Gupta, and Ali R. Butt. An in-memory object
caching framework with adaptive load balancing. In Proc. EuroSys,
2015.

John Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple load
balancing for distributed hash tables. In Peer-to-peer systems 11. 2003.
Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky.
Small cache, big effect: Provable load balancing for randomly partitioned
cluster services. In Proc. 2nd ACM Symposium on Cloud Computing,
October 2011.

H.X. Nguyen, D.R. Figueiredo, M. Grossglauser, and P. Thiran. Bal-
anced relay allocation on heterogeneous unstructured overlays. In Proc.
INFOCOM, 2008.

